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Performance Analysis of a 
Cardiac Assist Device in 
Counterpulsation 
Performance of a cardiac assist device pumping chamber in counterpulsation was 
evaluated using numerical simulations of the unsteady, three-dimensional flow inside 
the chamber and an analytical model of the force required to eject and fill the 
chamber. The wall shear stress within the device was similarly computed and modeled. 
The analytical model was scaled to match the numerical results and then used to 
predict performance at physiological operating conditions. According to these models 
for a stroke volume of 70 ml, between 0.4 and 1.0 W is required for counterpulsation 
at a frequency of 1.33 Hz against a restorative spring, depending on the spring 
constant chosen. The power and the maximum force calculated are within the ranges 
a trained skeletal muscle is capable of providing. Shear .stress predictions show that 
platelet activation in the absence of surface effects and hemolysis due to high shear 
are unlikely to occur with this design. Furthermore, vortices that develop in the 
chamber during filling are predicted to increase blood mixing and provide favorable 
washing of the chamber walls. A computational-analytical approach such as this 
may have potential to aid rapid performance evaluation of new devices and streamline 
the design optimization process. 

1 Introduction 
Approximately 2.3 million Americans suffer from chronic 

heart failure with 250,000 new patients diagnosed each year. It 
is estimated that 30,000 of these are potential candidates for the 
some 2000 hearts available for transplant. Because the supply of 
hearts suitable for transplant nationwide is unlikely to increase 
to meet this demand, the focus has turned to alternatives such 
as mechanical cardiac assist devices. An optimal cardiac assist 
device for permanent or very-long-term implantation has yet to 
be devised. An attractive power source for such a device is the 
body's own skeletal muscle. The use of autologous skeletal 
muscle to augment heart function either by cardiomyoplasty or 
with a skeletal-muscle ventricle (SMV) has several attractive 
features. These include an inherent donor source, elimination 
of the need for immunosuppression therapy, and the wholly 
internal nature of the power supply. 

A hybrid muscle-powered mechanical assist device was de­
vised, based heavily on successful SMV and mechanical assist 
device designs (Chesler, 1996). Following the work of Farrar 
et al. (1992, 1994, 1995), the chamber is artificial and me­
chanical whereas the power source is biological and muscular. 
However, this device is intended to operate in counterpulsa­
tion, much like an intra-aortic balloon pump, in contrast to 
the more traditional left ventricular assist device envisaged 
by Farrar and Hill (1992). With a counterpulsation device, 
the native heart is required to perform useful circulatory work, 
aided by the work of a skeletal muscle. Thus, the power re­
quired of the skeletal muscle in this system is less than in 
conventional left ventricular assist devices. Counterpulsation 
devices augment diastolic coronary flow by increasing dia­
stolic pressure and decrease the work required of the native 
heart by decreasing systolic afterload. They also increase pres­
sures and flow systemically. This particular design has a sin­
gle inlet/outlet and therefore has no artificial valves to direct 
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flow, but does require an intact aortic valve to prevent aortic 
regurgitation. The inlet/outlet enters tangential to the disklike 
pumping chamber to maximize swirling flows which wash 
the chamber walls with each cycle and increase mixing. The 
mechanical chamber is shown in Fig. 1, discretized into spec­
tral elements. 

Clinically, it is important to predict the force required for 
assist device operation when skeletal muscle is used to operate 
the device or when heat dissipation from a nonbiological power 
source is an issue. Muscular fatigue failure can be prevented if 
the time-varying load on the muscle can be properly designed. 
The clinical relevance of low shear stress is that it might be 
indicative of fluid stagnation and point to areas of poor mixing. 
Very high shear stresses in combination with long blood cell 
residence times are associated with the risk of platelet activation 
and hemolysis in bulk flow (Heliums, 1994). 

Flow studies are most often used to evaluate novel assist 
device designs in industry (Araki et al., 1993, 1994; Kerrigan 
et al., 1993; McCarthy, 1995). However, these require new 
physical prototypes for each significant design change. These 
prototypes must be instrumented for pressure and/or shear stress 
measurements and made translucent for flow visualization. The 
advantages of a numerical approach to device performance eval­
uation are severalfold: a wide range of operating conditions can 
be explored, optimization of performance based on a parametric 
study does not require new prototype construction, and more 
information is obtained computationally than can be obtained 
experimentally, even with modern, sophisticated flow visualiza­
tion techniques. The disadvantages of the computational ap­
proach are that accurate simulations of flow at physiological 
operating conditions require an enormous degree of resolution, 
computational time and memory. Also, they must be validated 
with experiinents. 

In this paper, a method to evaluate cardiac assist device per­
formance will be presented based on numerical simulations of 
flow in a novel cardiac assist device, operating within a laminar 
regime, in combination with a scaling analysis used to predict 
performance at physiological operating conditions. The scaling 
analysis is inherently approximate, but useful information can 
be gained at virtually no computational cost. 
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Table 1 Fluid properties and device operating conditions 
physiologically and in numerical simulations 

Physiological Numerical 

Fig. 1 Valveless mechanical pumping chamber design; dimensions In 
cm 

2 Numerical Simulations 
Numerical simulations of the unsteady, three-dimensional 

flow inside the pumping chamber were conducted to detail the 
fluid pressures, velocities and shear generated during pulsatile 
pumping. Operating conditions for the device in vivo based on 
a maximum stroke volume of 70 ml are shown in the first 
column of Table 1. The first three rows of the second column 
give one combination of physical parameters, which lead to the 
numerical, dimensionless operating conditions given in the last 

Density (g/cm') 
Viscosity (g/cm s) 
Frequency (Hz) 
Reynolds No. (Re/,) 
Womersley No. (a) 

1.07 
0.04 
1.33 

1600 
29 

1,07 
1,0 
0,75 

36 
4.3 

two rows. Geometric similarity was maintained between the 
two cases; dynamic similarity could not be maintained without 
increasing the mesh resolution to an impractical degree. This 
particular combination of parameters was chosen to match phys­
ical experiments beirig conducted on a prototype in the MIT 
Fluid Mechanics Laboratory. Two attempts to characterize the 
resulting fluid dynamic dissimilarities were made: first, by simu­
lating flow at even higher fluid viscosity (thus lower Re and 
a) and then analyzing the differences between these two condi­
tions (see Chesler, 1996), and second, by creating an analytical 
scaling model of the device that matches both the low and high 
Re simulation data and subsequently using this to predict flow 
characteristics at higher, more physiological operating con­
ditions. The latter approach will be discussed at length in 
Section 3. 

The fluid dynamics in this pumping chamber design are 
unique and affect pumping efficiency. The impact of these flow 
dynamics on the potential thrombogenicity of the chamber are 
similarly important. In the following subsections, basic features 
of the simulation are presented followed by discussions of the 
calculated forces required for pumping, shear stress in the cham­
ber and fluid vortices that develop. 

2.1 Method. The numerical solution of the Navier-
Stokes equations for flow inside the pumping chamber was 
carried out with the spectral element method. A commercial 
computational fluid dynamics (CFD) package was used (NEK­
TON). The spectral element technique is an efficient finite ele­
ment method that offers high-order convergence and geometric 
flexibility. The computational domain is discretized into a series 
of hexahedral elements. Within each element, a local Cartesian 
mesh is constructed corresponding to a series of n X n X n 
tensor-product Gauss-Lobatto-Legendre collocation points 
(that is, (w - l)th order polynomial interpolants are used for 
the velocities; the pressure has a lower order of interpolation). 
An arbitrary Lagrange-Eulerian description of the fime-depen-
dent domain is used to incorporate the effect of the moving 
boundary while an elliptic mesh solver obtains the mesh velocity 
and displacement at all interior nodal points (Maday and Patera, 
1989; Ho and Patera, 1990; Patera, 1992, 1994). 

The device geometry (10 cm diameter and 2 cm deep cham­
ber, 2 cm diameter and 10 cm long outflow tube in this case) 
was discretized into 396 elements using sixth-order interpolants. 

N o m e n c l a t u r e 

d = outlet tube diameter 
f = pumping frequency 
F = force 
ho = initial separation between plate and 

far wall; also outlet diameter 
h = time-varying separation between 

plate and far wall 
L = equivalent outflow length 
P = pressure 

Pu = time-varying aortic pressure 

Pj - time-varying pressure at the junc­
tion of the chamber and inlet/out­
let 

Q = time-varying flow rate 
2max = maximum flow rate 

R = plate radius 
U = time-varying velocity of plate 

u,Vr = fluid velocities in the axial (x) 
and radial (r) directions, respec­
tively 

6 = boundary layer thickness 

H = fluid viscosity 
p = fluid density 
T = shear stress 
v = dynamic viscosity 

Re,, = ipV^^Jioltj) = average Reynolds 
number 

a = ho^lnf/v = average Womersley 
_ number 

Re,, = (pUho/fi) = time-varying Re^ 

a^ = (phll nU)(dU I dt) = 
time-varying a 
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Fig. 2 Dimensional pusher piate position and resulting flow rate versus 
time, showing ejection followed by filling {f = 0.75 Hz) 
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Time (9) 

Fig. 3 Computed dimensional pusher plate force versus time 

Flow was generated by imposing a moving boundary at the 
pusher plate, which provided oscillatory flow ranging from 
+ 100 to -200 cm^/s. The flat, central piston and rigid side 
walls were joined by a ring whose deformation in the axial 
direction (of the chamber) varied sinusoidally with the radius. 
The inlet/outlet had an "outflow normal" boundary condition, 
which imposed normal outflow and inflow. All other boundaries 
were rigid walls. In order to model counterpulsation, the pusher 
plate moved slowly during ejection and more quickly during 
filling at nearly constant velocity; since filling is to occur during 
cardiac systole, which is roughly half the length of diastole, the 
filling phase of the cycle is shorter than ejection. The depth of 
the gap under the pusher plate, or fluid gap between the pusher 
plate and the far wall, versus time and resulting flow rate are 
shown in Fig. 2. 

The accuracy of the code's three-dimensional steady solver 
was ascertained by simulating entrance flow in a straight tube 
and comparing the results with experiment. Less than 2 percent 
error between computed and experimental entrance lengths was 
found, and similar agreement was found for the development 
of axial velocities at seven tube radii (Chesler, 1996). He and 
Ku (1994) validated the two-dimensional unsteady solver with 
axisymmetric Womersley flow. Mesh independence of the 
three-dimensional, unsteady chamber simulation was measured 
in two ways. First, a root mean square error in mass conserva­
tion between the plate and the outlet, which was observed in 
lower resolution simulations (using fourth-order interpolants) 
for identical conditions, was reduced to less than 1 percent. 
Second, the isocontours of pressure were observed to be contin­
uous at element boundaries. In the spectral element formulation, 
discontinuities in pressure contours, which are computed at 
a lower order than velocities, are a sensitive measure of the res­
idual. 

One complete cycle of ejection and filling was run at these 
conditions. Thus, these data represent only the fluid dynamics 
of device startup, not stable operating conditions for periodic 
pumping. Total time for these calculations on a DEC Alpha 
400 was on the order of 780 hours. 

2.2 Results. The force required to drive ejection and fill­
ing of the chamber was calculated by integrating the pressure 
forces on the plate at each time step. The plate is defined as all 
moving boundaries: the central rigid piston and outer deforming 
ring. This force is plotted versus time in Fig. 3. While only 
one cycle of ejection and filling was computed, axisymmetric 
simulations of the chamber (not presented) showed few differ­
ences between the first cycle and the second. 

A contour map of the pressure on the walls of the device at 
one stage of ejection is shown in Fig. 4; a map of the wall shear 
stresses at this time is shown in Fig. 5. Note, in interpreting the 
pressure and shear, that the physiological Reynolds number was 
lowered (approximately 50-fold) for the numerical simulation 
and that in calculating the shear stress here it was assumed that 
this was due to a higher fluid viscosity. With physiological 
blood viscosity, the shear stress and pressure would be de­
creased. 

Throughout filling at these operating conditions (Re;, = 36, 
a = 4.3), a large vortex appears in the center of the chamber 
while a second, smaller counterrotating vortex develops at the 
later stages of filling. Figure 6 shows the swirl in the chamber 
near the end of filling by plotting planar streamlines atop speed 
contours in one chamber cross section. Vortices similar to those 
found in curved tubes occur in the chamber annulus during both 

Fig. 4 Dimensional pressure contours during ejection {t = 0.73 s); axis 
dimensions In centimeters, pressure In dynes/cm' 
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Fig. 5 Dimensional shear stress contours during ejection (t •• 
axis dimensions in centimeters, shear stress in dynes/cm^ 

0.73 s); 

fining and ejection as shown on the left in Fig. 7. During ejec­
tion, these secondary vortices extend into the straight outlet 
tube whereas during filling, inflow is parallel to the tube walls 
and no secondary flows develop. Note that while secondary 
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Fig. 7 Streamlines (left) and dimensional pressure distribution (right) 
beneath the plate (y = 0) during ejection (t == 0.7 s, units of pressure 
dynes/cm^, dimensions In cm) 
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Fig. 6 Swirl in the chamber centerplane near the end of filling shown 
by plotting streamlines atop speed contours (t = 1.3 s); speed in cm/s 

vortices in the outlet tube are evident during ejection, precise 
computation of their decay characteristics (length, for example) 
in the outlet may not be reliable since the outflow boundary 
condition may influence the upstream fluid dynamics. 

2.3 Discussion of Numerical Results. The force required 
to drive ejection and filling is sensitive to plate acceleration and 
deceleration; the fluctuations at the beginning of ejection, plate 
reversal, and end-filling are quite large. In contrast, the force is 
nearly constant when the flow rate is constant (during mid-
ejection, briefly in-between ejection and filling, and then during 
mid-filling), except near the end of ejection when the required 
force increases slightly. This rise is likely due to the increased 
shear under the plate as the fluid gap decreases. Given that the 
effects of temporal acceleration and shear are discernible in the 
force plot, we can infer that both temporal acceleration and 
viscous stresses are important to the chamber fluid dynamics. 
However, detecting the influence of convection and determining 
the relative importance of temporal, convective, and viscous 
effects are not as straightforward. Furthermore, predicting quan­
titatively how these features and their relative influence would 
change at physiological conditions may be impossible with 
these data alone. The scaling model presented in Section 3 will 
address both of these issues. 

It was observed in shear contour plots at various times during 
ejection (but not shown here) that very low shear stress regions 
occur during pumping but migrate from one section of the cham­
ber to another. The highest shear stresses in the chamber at all 
times during the cycle occur at the edge of the pusher plate. As 
fluid flows from between the plates into the annular region, it 
separates in a manner similar to that seen in flow over a back-
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ward-facing step. A peak in shear occurs on the rigid portion 
of the piston just before the point of flow separation. The next 
highest stresses occur in the inlet/outlet. The surface area sub­
ject to high shear in the outlet is much larger than the area 
subjected to high shear at the boundary of the pusher plate, 
however. Thus, the residence time of blood particles in the 
outlet will be longer than at the edge of the pusher plate and 
may have more effect on blood cell activation and damage. 

The fluid vortices that occur are also relevant to device perfor­
mance. The risk of blood coagulation due to fixed recirculation 
zones and fluid Stagnation can be assessed qualitatively in this 
way. With this design, the large central vortex will wash the 
walls and should prevent stagnation. At physiological condi­
tions, the momentum of the inflow jet would increase, further 
amplifying the swirl in the chamber. The combination of the 
central and annular vortices should prevent stationary recircula­
tion zones or unmixed, stagnant pools of blood. 

3 Scaling Analysis 

These numerical simulations provide detailed flow informa­
tion at every time step for various flow conditions (Rc;, or a ) 
but it is not obvious how these fluid dynamics will change at 
physiological operating conditions (which are beyond present 
computational capabilities of NEKTON and other spectral ele­
ment codes). This section presents a simple model of flow in 
the outlet tube and beneath the pusher plate, which is shown to 
be consistent with the more detailed computations for one set of 
parameters. The model and parameters are then used to predict 
pumping chamber performance at physiological Reynolds and 
Womersley numbers. 

Beneath the pusher plate, we approximate the flow by an 
axisymmetric radial flow. When the fluid gap becomes small 
and this contribution is most important, the radial component 
of the Navier-Stokes equation simplifies to 

/ dVr dVr 

^V dt dr 

dP d^Vr 
a + ^ ;:i 2 or ax 

(3) 

Again assuming a parabolic flow profile and given the following 
expression for mass conservation (for 0 < r =s i?) 

Q(r, Opiato = t/TT/-̂  = 27vrP,(ho - Ut), (4) 

we can approximate the pressure gradient as 

dP Guv, (dVr 1 rf(i/,)' 

dr {ho- Ut) dt 2 dr 

/2nU p d(UIh) plP 

~\ / j ' "*" 2 dt "*" 4 /i" 
(5) 

defining the time-varying separation between the plate and 
chamber far wall as h = ho — Ut. Integrating from an arbitrary 
radial location r to the edge of the plate, we have 

P(r) Pj = - (R^ 
2 

, (3ixU pdjU/h) pU^ 

'[ h' 2 dt 4 h' 

2 \ h' 2h dt 4 h^ 
(6) 

3.1 Model Development. We are interested in a simple 
model of the forces required to operate the counterpulsating 
pump. The force is determined by the pressure distribution be­
neath the pusher plate and the pressure drop in the annulus and 
outlet. For the purpose of obtaining scaling relationships, we 
treat flow in the inlet/outlet as fully developed and undirec-
tional, and flow beneath the pusher plate as axisymmetric. In 
the outlet tube under these conditions, the Navier-Stokes equa­
tion can be written: 

dP 1 8 
— = fi 
dx r dr 

du 

Tr 
I du du 
\ -— + u \dt dx 

(1) 

where the fluid viscosity multiplies the viscous term, and the 
density multiplies the temporal and convective acceleration 
terms, in that order. The flow rate in the outlet tube (of diameter 
ho) is Q and the pressure at the outlet boundary is taken to be 
a reference value, zero. The total pressure drop in the annulus 
and outlet can be represented by a Poiseuille pressure drop in 
a straight tube of length L. Then, the pressure at a point just 
inside the pumping chamber, in the annulus, where the flow 
channel has expanded and the velocity has fallen can be approxi­
mated as 

Py = 
i2%nQL 

nho TTho dt 
4(;^e (2) 

Here, we have let the pressure at the edge of the plate at r = 
R be equal to Pj, the pressure in the annulus near the outlet. 
The computational results support this approximation; a repre­
sentative example of the pressure distribution from the center 
of the plate to the annulus is given on the right in Fig. 7. This 
figure also demonstrates the lack of axisymmetry under the 
plate in the full simulation; note however that symmetry about 
a diagonal through the chamber does exist, as shown in Figs. 
4 and 5. 

Finally, the force required to displace the pusher plate is the 
integral of the plate pressure distribution over the pusher plate 
area. Dimensionlessly, that is, 

Q 
P'Qm^^R^/hh 2„ 

/128L 3hl 

\ ho ~^ 4h^ 

^^ :SR\ 2hl 
-f- a' 

4L /!o 

ho 8/! 
(7) 

where Re/, = (pUho/fi) and a^ = {phllp,U){dUldt) are taken 
to be time-varying, contrary to conventional usage. Given Q, 
Qmax. ho, R and the fluid properties, this approximate analytical 
expression for the pusher plate force can be plotted versus time, 
for some equivalent outflow length, L chosen to best fit the 
numerical data. 

using a parabolic axial flow profile to estimate the viscous term 
(that multiplied by the viscosity). Again, the temporal and con­
vective terms are those multiplied by the fluid density where 
the temporal is the first—proportional to the time derivative of 
Q—and the convective is the second—proportional to Q^. The 
assumption of parabolic flow will be discussed in the following 
section. At these operating conditions, the unsteady term is the 
largest contributor to the total force required to drive the plate, 
all but overwhelming the viscous and convective inertia contri­
butions. 

3.2 Model Validation. Figure 8 plots force versus time 
obtained by the numerical simulation and computed from Eq. 
(7) for (L/ho) = 7. Force is nondimensionahzed as in Eq. (7) 
above and time is nondimensionahzed by the pumping fre­
quency,/. The flow rate in the model, Q, is set equal to the 
flow rate from the simulation; the pusher plate velocity and 
acceleration were then back-calculated from the outlet flow rate 
and plate area. 

Several features of the force required over time are captured 
by the model: the early peak in force during plate acceleration. 
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Fig. 8 Dimensionless pusher plate force versus time for numerical simu­
lation and model; L/ho = 7 
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Fig. 9 Dimensionless viscous, inertial and unsteady components of the 
model force, L/ho = 7 

the oscillation near flow reversal, the substantial negative peak 
in force during early filling, and the sharp peak in force at the 
end of the cycle. The various components of Eq. (7) for these 
flow conditions are plotted separately in Fig. 9: the quasi-steady 
viscous, convective, and temporal acceleration terms. Notice 
that the temporal acceleration term is discontinuous where the 
change in flow rate is discontinuous (that is, where dQIdt is 
discontinuous); it is zero when dQIdt is zero. 

Two features of the computational force plot are not well 
captured by the single-parameter model: the slow rise in force 
near the end of ejection and the degree of pressure recovery 
during filling. However, in view of the fact that the model 
was developed with scahng arguments, we can justifiably add 
auxiliary constants into the model to achieve a better fit with 
the data. That is, we can rewrite Eq. (7) as 

Q 

f^Q, m a x - " ' " 0 
C. 

/128L 
+ C2 

3hl 
4h' 

+ c. Re* 
8/?^ 

• + Ci 
3hl 

+ CsU' 
AL ho 

ho Sh 
(8) 

The constants C3, C4, and Ca are approximately 2-, 2-, and 15-
fold greater than one, respectively. These are the modifiers of 
the total convective inertia term (under the plate and in the 
outlet), the convective inertia term under the plate and the 
temporal inertia term under the plate. Two assumptions made 
in the scaling model likely contribute to the underestimation of 
the force contribution from convective acceleration: the lack of 
axisymmetry in flow under the plate, and the nonuniform veloc­
ity profiles under the plate and in the tube. As the shear contours 
in Fig. 5 demonstrate, much of the flow under the plate, espe­
cially that farthest from the outlet, is traveling both farther and 
faster than would be required for axisymmetric flow. Thus the 
pressure gradient required to accelerate the flow is higher than 
would be predicted in an axisymmetric case. Also, by assuming 
symmetric flow, the model cannot account for vortical flow 
either under the plate (during filling) or in the outlet tube (dur­
ing ejection). Since the energy required to both form and dissi­
pate these structures is not accounted for, we would predict that 
the model would underestimate the total force, which is indeed 
the case. 

and then test c, until a best fit is obtained. Using least squares 
to assess the best fit for 0.1 < c,- s 10, c = (0.96, 7.40, 2.24, 
2.09, 0.87, 14.66) yields the curve shown in Fig. 10. 

Both the original and modified scaling arguments provide 
physical insight that is not obvious from the CFD calculation. 
If, for the conditions imposed in the numerical simulation, Ci 
and C2 were both approximately one, we could infer that flow 
under the plate and flow in the outlet were predominantly para­
bolic. If C2 were order one and Ci greater, we could infer that 
neither is parabolic, but both have similar boundary layer thick­
ness, determined by either temporal or spatial accelerations. 
However, since C2 is significantly greater than one (and Ci is 
not), the shear stresses beneath the plate and in the outlet tube 
appear to have been influenced to different degrees by these 
effects, at these operating conditions. That is, we could predict 
that flow in the outlet tube is nearly parabolic, whereas under 
the plate it is not. Observation of the numerically computed 
velocity profiles in these locations verifies this prediction: In 
the outlet, the profiles are blunted parabolas, whereas under the 
plate, the profiles show substantial reversal in the core and have 
steep gradients near both the top and bottom walls more typical 
of Womersley flow. 

CFD simulation 
Scaling model (LA|Q=7, C.) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Time 

Fig. 10 Dimensionless pusher plate force versus time for numerical sim­
ulation and six-parameter model; L/ho = 7; c = (0.96, 7.40, 2.24, 2.09, 
0.87, 14.66) 
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Fig. 11 Dimensional plate displacement and resulting flow rate versus 
time for two cycles (heart rate = 80 bpm or f = 1.33 Hz) 

3.3.1 Force and Shear Stress. At these new operating 
conditions, some assumptions made in the scaling model of the 
counterpulsation device obviously fail. In particular, the first 
two terms in Eq. (7) were obtained by assuming that the veloc­
ity profiles in the outlet and under the plate (respectively) were 
parabolic. As the discussion of auxiliary constants above dem­
onstrated, this assumption failed even at low-frequency opera­
tion. 

These shear components of the force should scale with the 
viscosity of the fluid, the velocity of flow in the flow direction, 
and inversely with the thickness of the boundary layer (or half 
the tube diameter in fully developed tube flow). In unsteady 
flow, the boundary layer thickness 6 is approximately 

so that the shear stress scales as 

6 
a jiU 

3 ho 
(9) 

Or, if a Blasius boundary layer is assumed where 6 = 
sVuL/ U then the shear stress can be written 

1 / o ^0 r =3 - Re,, — 
5 V L ho 

(10) 

Second, uniform velocity profiles were used to estimate the 
momentum of flow. In fact, parabolic flow requires 1.2 times 
more momentum to accelerate than uniform flow in a two-
dimensional channel and 1.33 times more in a tube. It would 
be difficult to calculate the scale factor for the nonuniform, 
nonparabolic profiles generated here but using uniform flow 
profiles is certainly an underestimation. 

The lack of flow axisymmetry under the plate is also likely 
to be the reason for the rather large magnitude of the sixth 
constant in Eq. (8) . The velocity profiles will not affect the 
pressure gradient required to accelerate the flow temporally, but 
the length over which that acceleration takes place will. Since 
much of the flow under the plate is traveling farther than the 
characteristic plate radius R, and must travel at a higher velocity 
than in an axisymmetric flow, more pressure and thus force will 
be required to overcome its inertia. Also, the time-dependent 
nature of the vortices during filling will contribute to temporal 
accelerations in the flow. 

While it is not surprising that the coefficients take on values 
different from unity, the significant deviations of C2 and c^ are 
larger than one would expect and difficult to justify. It should 
be noted, however, that the contributions to the total force of 
those terms associated with plate effects are, in general, quite 
small. For example, setting Cf, to one produces a significant 
effect only during the interval t = 0.63 to 0.7 (flow reversal) 
and setting Cz to one is primarily noticeable when t = 0.4 
to 0.5 (end ejection). It might therefore be expected that the 
uncertainty in estimating the coefficients corresponding to plate 
effects (c2, C4 and Ce) will be large. 

3.3 Model Predictions Under Physiologic Conditions. 
Given the observation that the pusher plate force is sensitive to 
discontinuities in plate acceleration and deceleration, a 
smoother plate velocity function was specified for operation at 
physiological conditions (see Table 1 for parameter values). 
To undergo a smooth transition from a slow ejection to a rapid 
filling cycle, two sine waves were juxtaposed: one with a fre­
quency 2 / 3 / , the other with a frequency 1/3/. A physiological 
heart rate of 80 bpm ( / = 1.33 Hz) was chosen, and the stroke 
volume was maintained at 70 ml. Figure 11 shows two cycles 
of this plate displacement (or fluid gap) versus time and the 
resuhing flow rate. In this case, dQIdt is discontinuous at only 
two points in the cycle (instead of four) and is equal to zero 
only twice (at mid-ejection and mid-filling). 

The effect of these stresses on the force can be estimated by 
scaling the first two terms in Eq. (7). Assuming first that the 
unsteady effects dominate both under the plate and in the outlet, 
both terms would be greater by a factor of approximately 10 
(when the fluid gap is small). Assuming a Blasius boundary 
layer, both terms are amplified by roughly 4. In the worst case 
scenario with the highest shear forces, the total force predicted 
with amplified shear components as well as the temporal and 
convective inertial terms are shown dimensionally for two 
pumping cycles in Fig. 12. 

If the contributions to the force from the pusher plate and 
the outlet tube are plotted separately, an interesting observation 
can be made: The sum of the viscous, convective, and temporal 
inertia terms in the outlet tube is two to ten times higher than 
that from under the plate, depending on the point in the cycle. 
The same holds true in the breakdown of force at simulation 
(nonphysiological) conditions. Rewriting Eq. (8) for an arbi­
trary outlet tube diameter d, we see that increasing the outlet 
tube area would decrease the outlet tube contribution to force, 
and thus significantly decrease the total force: 
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Fig. 12 Dimensional viscous, inertial and unsteady components, and 
total of the model force according to Eq. (8) at physiological operating 
conditions; UK = 7; c = (9.61, 7.40, 2.24, 2.09, 0.87, 14.66) 

Journal of Biomechanical Engineering AUGUST 1998, Vol. 120 / 443 

Downloaded 16 Mar 2009 to 128.104.192.14. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



/ifi, max'^ ' " 0 

(\2%Lhl 3hl 

\ ho d 4h'' 

+ C5 a 
hn d' 

+ C6 
8/! 

(11) i 

However, this equation cannot be optimized for d, since there 
exists no term to limit its increase. Physically, as the outlet tube 
diameter increases, fluid dynamics in the junction will become 
more important and the two-component (chamber-tube) scaling 
model will fail. Also, the shear stresses in the outlet tube will 
fall, potentially leading to quasi-stagnant flow and thrombogen-
esis. A simulation at low Re and a, but with a wide outlet tube, 
could shed light on important details of the fluid dynamics in 
this region and the potential improvements in the scaling model. 

3.3.2 Blood Cell Activation. Shear stress is also im­
portant in terms of its potential effect on blood cell activation. 
As noted earlier, a zone of maximum shear stress is observed 
at the outer circumference of the pusher plate. To examine this 
tendency further, and to verify how shear stress beneath the 
plate would scale with a, the larger of the effects discussed 
above, a simple axisymmetric simulation of chamber deforma­
tion was performed. The center of the chamber became the axis 
of symmetry for this model. Top and bottom walls were the far 
wall and pusher plate, respectively. Here, the deforming region 
had the same radius and pattern of deformation as the pusher 
plate in the full three-dimensional chamber simulation. Since 
the chamber outlet could not be mimicked in an axisymmetric 
model, the chamber annulus was extended radially, and had an 
outflow normal boundary condition imposed. The simulation 
was run for two cycles of ejection and filling with the same 
pusher plate displacement used in the physiological simulation; 
the viscosity of the fluid was changed to vary a; a = 1 and 21 
were tested. The shear stress on the both flat and deforming 
regions of the pusher plate were observed to scale with the a 
during most of ejection and filling. 

Assuming this relationship holds in the nonaxisymmetric 
chamber, peak stresses around the rim of the pusher plate would 
be approximately 170 dynes/cm^ during filling (scaled ac­
cording to Eq. (9) for physiological conditions). A conservative 
estimate of the transit time of a red cell past the narrow region 
of peak shear is 0.03 seconds (based on a speed of 10 cm/s 
and length of 0.3 cm); according to Heliums et al. (1994) data 
on bulk flow effects on blood cell behavior, this should not cause 
red blood cell hemolysis or platelet activation in the absence of 
surface-driven phenomena. Platelet aggregation and adhesion 
secondary to the material properties of the device, and sublethal 
damage cannot be predicted from these data. 

The slower transit times through the outlet, where the shear 
stresses are not as high, may lead to greater in vivo risk of 
hemolysis. Again using a to scale the shear stresses calculated 
in the three-dimensional CFD simulation, the predicted shear 
is 90 dynes/cm^ very close to the walls. The transit time through 
the inlet/outlet during filling is approximately 0.2 seconds, 
given the mean flow rate and inlet length. This shear stress 
exposure-residence time is equivalent to that of the microcircu­
lation, i.e., negligible. Two qualifications must be made, how­
ever. On the one hand, in the thin boundary layer the velocities 
are lower than in the mean flow, so the transit times are longer. 
On the other, while the inflow during filling is essentially unidi­
rectional, during outflow secondary flows exist. These second­
ary flows will increase mixing near the walls, thereby decreasing 
both transit times and shear stresses in the outlet. 

Againsl zero pressure 
Agalnsl Pa 
Against Pa and weak spnng 
Against Pa and strong spring 

Time (s) 

Fig. 13 Dimensional force required for two cycles of physiological oper­
ation against zero pressure (dotted line), aortic pressure (Pa, dash-dot­
ted line) and against aortic pressure aided by a weak (dashed line, k = 
5.7 dynes/cm) and strong (solid line, k = 40 dynes/cm) linear spring; L/ 
/]„ = 7; c = (9.61, 7.40, 2.24, 2.09, 0.87, 14.66) 

3.3.3 Aortic Pressure Compensation. An important 
clinical factor yet to be considered in the device evaluation is 
the time-varying aortic pressure. Given that human aortic pres­
sure data vary, that data for the patient population at risk will 
vary even more, and that the device itself will change the pres­
sure trace at the aorta, no attempt was made to model the dich-
rotic notch or other normal, physiological features of the aortic 
pressure waveform. Instead, the modified-sinusoid plate dis­
placement profile was shifted 90 deg out of phase and used to 
model pressure in the aorta. In this way, the chamber ejects 
during systole {h is small when the pressure is high) and fiUs 
during diastole (vice versa). To compensate for the aortic mean 
pressure and aid filling, a linear spring can be incorporated into 
the device, chosen so that one muscle can supply the remaining 
required forces in contraction. Here we choose the spring to 
enable filling, whereas the stimulated-muscle contraction pro­
vides the impulse of power required for ejection. In other words, 
the force required of the muscle during ejection (the first 0.5 s 
of each cycle) must be entirely contractile; then, the spring 
forcibly stretches the muscle and pulls back the pusher plate 
during filling. 

Figure 13 plots the predicted pusher plate force acting against 
zero pressure (dotted line), aortic pressure (dash-dotted line), 
and aortic pressure counteracted by a weak and strong spring 
with the rest length adjusted so that all of ejection requires 
positive force (dashed and solid lines, respectively). The strong 
and weak spring constants were 40 and 5.7 dynes/cm, with rest 
lengths —0.65 cm and 7.23 cm, respectively. Adding either 
spring increases the maximum force required but makes the 
system feasible for one skeletal muscle. At these operating con­
ditions, the predicted maximum force and power required for 
the strong and weak spring configurations are 87 N and 1.0 W 
and 33 N and 0.4 W, respectively. Clearly, skeletal muscle work 
against a strong spring must be greater than against a weak 
spring. However, the stronger spring smoothes the force re­
quired with respect to time. This feature might eliminate inad­
vertent backflow or abrupt changes in flow direction that could 
result from power demand and supply mismatch. 

Normal, healthy heart muscle supplies approximately 2 to 4 
W/kg at rest, and can produce up to 16 W/kg during very 
heavy exercise (Salmons and Jarvis, 1990, 1992). Minimally 
conditioned rabbit skeletal muscle has been shown to provide 
10 W/kg with a loss in power of 10 percent over 6 hours 
(Salmons and Jarvis, 1990); well-conditioned canine muscle 
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generated 2.6 W/kg for over nine weeks at 54 bpm with the 
muscle wrapped into a ventricular shape (Acker et al., 1986). 
The wrapped configuration accounts for a reduction in effi­
ciency, but interspecies differences cannot be discounted. Salm­
ons and Jarvis (1992) have estimated that a 225 g conditioned, 
human lattisimus dorsi muscle would be able to provide up to 
1.8 W of power in the long term. This value exceeds even the 
estimated power requirements of our device with the stronger 
spring in place. However, electromechanical losses between the 
muscle and assist device can be assumed, suggesting an optimal 
spring constant between the two tested here. In addition, the 
peak force required by the stronger spring may be beyond the 
capabilities of a conditioned, human skeletal muscle. Reichen-
bach and Farrar (1994) found a 250 g porcine latissimus dorsi 
muscle capable of producing a maximum of 80 N of force in 
an unconditioned state, yet chronic stimulation leads to a loss of 
both weight and cross-sectional area, which reduces maximum 
muscle force (Salmons and Jarvis, 1990). 

4 Conclusions 

The combination of numerical simulations and an analytical 
model to evaluate flow in a ventricular assist device and assess 
its clinical potential is a novel approach to a vexing problem. 
Currently devices are tested by costly and time-consuming flow 
visualization studies, which do not yield complete information. 
Simulations provide detailed information at all stages of opera­
tion but can rarely be run at physiological operating conditions 
due to the computational memory and time requirements which 
were significant even at conditions used here. Approximate ana­
lytical models cannot be used without validation. 

By adjusting one length parameter, an analytical model for 
flow in a single inlet/outlet counterpulsating cardiac assist de­
vice was a good predictor of the force required to fill and eject 
the chamber; a more sophisticated six-parameter model was an 
excellent predictor of the force obtained by numerical simula­
tion at operating conditions Re;, = 36 and a = 4.3. This model 
was then used to predict the force and power requirements for 
physiological operation. Further, at high Womersley numbers, 
the shear stress was predicted to scale with the Womersley 
number (and validated numerically) enabling predictions of 
shear stress exposure to blood cells. The additional force re­
quired to overcome a non-zero, time-varying aortic pressure 
was calculated and used to test two spring constant values for 
a restorative spring to aid filling and offset the effect of the 
mean aortic pressure. The power and forces necessary to provide 
counterpulsatile assist against aortic pressure and an intermedi­
ate strength restorative spring (from 0.4 to 1.0 W and up to 
perhaps 60 N) are within the capabilities of trained skeletal 
muscle, even in the long term. 

Flow patterns, force and power calculations were performed 
for one device design and one pumping pattern at physiological 
conditions. For this or any design, a more optimal counterpulsat­
ing, pumping pattern for use with skeletal muscle, minimizing 
the amplitude and duration of required force likely exists. An 
advantage of the approach developed here is that the dependence 

of required force and power on design and operational changes 
in the device can be seen readily. Furthermore, physical insight 
provided by the model can steer the designer toward improve­
ments according to the fluid dynamics in the device or the 
limitations of the power source. 
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