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Mulchrone A, Moulton H, Eldridge MW, Chesler NC. Suscep-
tibility to high-altitude pulmonary edema is associated with increased
pulmonary arterial stiffness during exercise. J Appl Physiol 128:
514–522, 2020. First published December 19, 2019; doi:10.1152/
japplphysiol.00153.2019.—High-altitude pulmonary edema (HAPE),
a reversible form of capillary leak, is a common consequence of rapid
ascension to high altitude and a major cause of death related to
high-altitude exposure. Individuals with a prior history of HAPE are
more susceptible to future episodes, but the underlying risk factors
remain uncertain. Previous studies have shown that HAPE-susceptible
subjects have an exaggerated pulmonary vasoreactivity to acute hyp-
oxia, but incomplete data are available regarding their vascular re-
sponse to exercise. To examine this, seven HAPE-susceptible subjects
and nine control subjects (HAPE-resistant) were studied at rest and
during incremental exercise at sea level and at 3,810 m altitude.
Studies were conducted in both normoxic (inspired PO2 ! 148 Torr)
and hypoxic (inspired PO2 ! 91 Torr) conditions at each location.
Here, we report an expanded analysis of previously published data,
including a distensible vessel model that showed that HAPE-suscep-
tible subjects had significantly reduced small distal artery distensibil-
ity at sea level compared with HAPE-resistant control subjects
[0.011 " 0.001 vs. 0.021 " 0.002 mmHg#1; P $ 0.001). Moreover,
HAPE-susceptible subjects demonstrated constant distensibility over
all conditions, suggesting that distal arteries are maximally distended
at rest. Consistent with having increased distal artery stiffness, HAPE-
susceptible subjects had greater increases in pulmonary artery pulse
pressure with exercise, which suggests increased proximal artery
stiffness. In summary, HAPE-susceptible subjects have exercise-
induced increases in proximal artery stiffness and baseline increases
in distal artery stiffness, suggesting increased pulsatile load on the
right ventricle.

NEW & NOTEWORTHY In comparison to subjects who appear
resistant to high-altitude pulmonary edema, those previously symp-
tomatic show greater increases in large and small artery stiffness in
response to exercise. These differences in arterial stiffness may be a
risk factor for the development of high-altitude pulmonary edema or
evidence that consequences of high-altitude pulmonary edema are
long-lasting after return to sea level.

distensibility; effective arterial elastance; high-altitude pulmonary
edema; pulse pressure; total arterial compliance

INTRODUCTION

High-altitude pulmonary edema (HAPE) is a reversible form
of noncardiogenic alveolar capillary membrane leak typically
occurring in young, healthy individuals who ascend to altitudes
over 2,000 m and engage in vigorous exercise. Although
treatment can be as simple as rest, oxygen supplementation, or
returning to low altitude (19, 23, 38), HAPE is one of the major
causes of death related to high-altitude exposure (3, 29). HAPE
is a multifactorial condition with both genetic and environmen-
tal contributors (3, 15, 26, 40). The rate of ascent, peak altitude
reached, and preacclimatization are known to contribute to
susceptibility, but one of the most important predictors may be
having experienced a prior HAPE episode (15, 26).

Many hypotheses have been suggested to explain the under-
lying pathophysiological mechanisms behind HAPE, but the
exact cause remains uncertain. One of the most supported
theories suggests that it is initiated by uneven hypoxic vaso-
constriction, with possible hypoxia-induced pulmonary venous
constriction, causing increased microvascular pressures (8, 21).
These elevated pressures cause interstitial leakage, and the
result is a high-permeability form of edema (3, 35). However,
alterations in the classic Starling forces alone do not account
for the presence of plasma proteins, red blood cells, and
proinflammatory cytokines found within the bronchoalveolar
lavage fluid (18, 56, 57, 64).

To better explain the unexpected presence of these large
molecules in the lavage fluid, West et al. proposed that HAPE
is initiated by a mechanical stress failure of the pulmonary
capillaries (69, 70) or some alteration in the selectivity of the
alveolar-capillary barrier, and Swenson et al. demonstrated that
inflammation occurs as a secondary consequence (64). Patz et
al. hypothesized that the uneven hypoxic vasoconstriction
could be the result of regionally heterogeneous distribution of
ventilation and PO2 within the lungs. However, further inves-
tigation revealed that HAPE-susceptible subjects had a more
uniform distribution of ventilation, so Patz et al. then postu-
lated that the mechanism behind HAPE resides within the
pulmonary vasculature (46).

HAPE-susceptible individuals have increased pulmonary
arterial pressures (PAP) in hypoxic conditions and an increased
vasoreactivity to hypoxia (12, 21, 22), but incomplete data are
available regarding their response to exercise. Some studies
have demonstrated elevated PAP and increased pulmonary
vascular resistance (PVR) in HAPE-susceptible subjects in
response to light exercise in comparison to HAPE-resistant
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control subjects (11, 17, 28). However, Viswanathan et al.
failed to demonstrate any abnormal response to exercise (66),
and Hultgren et al. reported a slightly abnormal elevation in
PAP in only one of five HAPE-susceptible subjects (24).

To better understand the differences in the pulmonary vas-
culature between HAPE-susceptible and HAPE-resistant sub-
jects, we expanded the analysis of previously published data
from seven HAPE-susceptible subjects and nine HAPE-resis-
tant subjects under conditions of exercise, acute hypoxia, and
hypobaria (11, 48) to focus on arterial stiffness and pulsatile
pulmonary hemodynamics. We hypothesized that previous
HAPE episodes are correlated with pulmonary artery (PA)
stiffening during stress, which contributes to increased pulsa-
tile loading of the right ventricle (RV).

METHODS

A detailed description of this study’s methods can be found in
Eldridge et al. 1996 (11), in which hemodynamic pressure differ-
ences between the subject groups were reported, as well as a
companion paper by Podolsky et al. that identified ventilation-
perfusion mismatch (48). Therefore, the description of methods
here is limited to details pertaining to the methods of data analysis.
All procedures were approved by the Human Subject Committees
at the University of California, San Diego and the University of
California, San Francisco.

Study population. Sixteen healthy mountain climbers (with ex-
perience above 3,000 m) who engaged in regular, heavy exercise
were recruited for this study. Seven of these subjects (6 men, 1
woman) reported having experienced HAPE at least once on
previous trips to high altitude. The remaining nine subjects (all
men) had made repeated trips to comparable altitudes without
complication.

Preliminary studies. Each subject first underwent a preliminary
exercise test on a stationary cycle ergometer. They were asked to
exercise at incremental workloads to exhaustion in both normoxia and
hypoxia [fraction of inspired O2 (FIO2

) ! 0.125] to determine their
maximal work rate in each condition. The subsequent exercise pro-
tocols were then performed at 35%, 65%, and 85% of that respective
maximal work rate (Pmax), with a minimum of 30 min of rest between
the two runs. Blood samples were collected at rest and during each
exercise stage.

Experimental design. The experimental protocol was first carried
out in San Diego, California, which is located approximately at sea
level. The subjects inhaled ambient air for normoxia and dry 12.5%
O2 to achieve hypoxia. One month later, subjects were brought up to
the University of California White Mountain Laboratory, located at an
altitude of 3,810 m. At altitude, 33% dry O2 was inhaled for normoxia
and ambient air for hypoxia.

Calculations. Cardiac output (Q) was calculated from the Fick
equation with the blood gas data:

Q ! V̇O2!a-vCO2" (1)

where V̇O2 is the measured oxygen uptake and a-vCO2 is the differ-
ence in oxygen content between the arterial and mixed venous blood
samples. Further explanation and assumptions are given in Podolsky
et al. 1996 (48).

Distensibility of the pulmonary vasculature (%) was calculated with
the governing equation from the distensible vessel model developed
by Linehan et al. (32):

mPAP !
#!1 " #Pw"5 " 5# · R0 · Q$1⁄5 $ 1

#
(2)

where mPAP is the mean pulmonary artery pressure, Pw is the
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Fig. 1. A and B: pulmonary capillary wedge pressure (Pw) estimates during exercise in normoxic conditions (A) and hypoxic conditions (B). Pmax, maximal work
rate. C: an overview of the 4 resting states. Missing wedge pressures were estimated by a superimposed linear fit to the measured mean pulmonary artery pressure
vs. Pw data for each subject group per condition.
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pulmonary wedge pressure, and R0 is the total pulmonary vascular
resistance at rest, calculated as (51):

R0 !
mPAP

Q
(3)

To account for changes in hydration during exercise and at altitude,
R0 was normalized to changes in hematocrit (Hct), which was calcu-

lated from the centrifuged blood samples:

Hct !
length of red blood cell column

length of whole blood column
% 100 (4)

% was solved with the method of successive iterations, as described
by Reeves et al. (51).

Initial safety concerns regarding the balloon occlusion necessary to
obtain Pw during exercise at altitude prevented the acquisition of
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Fig. 2. Sensitivity analysis of pulmonary capillary wedge pressure (Pw). Each graph contains the original data set with no estimated values, termed “measured.”
Blue squares represent the data set with each data point estimated using the experimentally derived relationships in each subject group in each condition. Green
triangles represent the data using the partial prediction, where only the missing wedge pressures were estimated. Pmax, maximal work rate. *P $ 0.05 vs.
measured.
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516 HAPE SUSCEPTIBILITY IS ASSOCIATED WITH PA STIFFENING

J Appl Physiol • doi:10.1152/japplphysiol.00153.2019 • www.jap.org
Downloaded from journals.physiology.org/journal/jappl at Univ of Wisc/Madison (072.033.002.250) on May 15, 2020.



several wedge pressures, with 11 of the subjects missing some or all
of the wedge pressures. However, there is a predictable relationship
between mPAP and Pw that has been well accepted (73) and has been
shown to be directly proportional to increases in Q (1, 31, 43, 44). We
used this relationship to estimate the missing Pw values by superim-
posing a linear fit to the obtained mPAP vs. Pw data for each subject.

A predictable relationship also exists between the systolic pulmo-
nary artery pressure (sPAP), the diastolic pulmonary artery pressure
(dPAP), and the mPAP (6, 65). Since the pulmonary artery pulse
pressure (PAPP) is defined as

PAPP ! sPAP $ dPAP (5)

it follows that there also exists a linear relationship between PAPP and
mPAP (52):

PAPP ! 4.5 " 0.88!mPAP" (6)

This relationship has been shown to hold true in both children and
adults, as well as across a variety of disease states, exercise states,
postures, and with administered vasodilators (6, 52, 65). This was then
used to estimate the total arterial compliance (7, 13, 20, 36, 50):

total arterial compliance !
SV

PAPP
(7)

where SV is the stroke volume. Finally, a modified version of the
windkessel model was used to estimate the effective arterial elastance
(Ea), a measure of RV afterload that includes pulsatile loading in
addition to steady loading (2):

Ea !
mPAP $ Pw

SV
(8)

Statistical analysis. A linear mixed-effects model with subject-
specific random effects and repeated measures across exercise levels

was used to conduct the comparisons between treatment groups and
other experimental conditions. Two- and three-way interaction effects
between treatment group, altitude, and oxygen level were included in
the model. Model adjusted mean values were calculated for each
experimental condition. All data are reported as means " standard
error. All P values are two sided, with P $ 0.05 being considered
evidence of statistical significance.

RESULTS

The hemodynamic response to exercise, acute hypoxia, and
hypobaria was successfully measured in nine HAPE-resistant
control subjects. Seven HAPE-susceptible subjects were ana-
lyzed at sea level, but one subject dropped out of the study after
this phase, so only six subjects are included at altitude.

Pulmonary pressures. Figure 1 shows the mean Pw after the
missing values were estimated from the superimposed linear
fit. Overall, the average Pw increased with increasing exercise
effort for both HAPE-resistant and HAPE-susceptible groups.
The HAPE-susceptible group had an exaggerated response to
exercise compared with the HAPE-resistant group. At 85% of
their maximal power, HAPE-susceptible subjects had a 4.7-
fold increase compared with rest (3.57 " 0.80 vs. 16.84 " 1.69
mmHg; P $ 0.001), whereas HAPE-resistant subjects had a
2.6-fold increase (4.28 " 0.64 v. 11.27 " 0.95 mmHg; P $
0.001). No significant changes were observed with exposure to
acute hypoxia or altitude in either group. Sensitivity analysis
did not reveal statistical differences between the measured and
predicted Pw values (Fig. 2). The pulmonary artery pulse
pressure (PAPP) was also directly proportional to the exercise
level; increased exercise effort resulted in higher PAPP, with
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HAPE-susceptible subjects having significantly higher PAPP
than HAPE-resistant subjects at every stage and condition apart
from rest (Fig. 3). Both groups showed an increased pressure
response when brought to high altitude, but no statistical
differences were measured between normoxic and hypoxic
conditions (Fig. 3C).

RV afterload. The total arterial compliance decreased in
hypobaric conditions for both HAPE-resistant and HAPE-
susceptible groups (Fig. 4). However, once again the HAPE-
susceptible subjects had an exaggerated response. They
showed further decreases when exposed to hypoxia both at sea
level (4.73 " 0.49 vs. 3.78 " 0.26 mL/mmHg; P $ 0.05) and
at altitude (3.37 " 0.36 vs. 2.58 " 0.31 mL/mmHg; P $ 0.01).
In contrast, the HAPE-resistant group had little to no change
with exposure to hypoxia at sea level (5.59 " 0.39 vs.
5.67 " 0.53 mL/mmHg; P & 0.05) or at altitude (3.91 " 0.25
vs. 3.59 " 0.34 mL/mmHg; P & 0.05).

The trends of increased pulmonary vascular resistance [see
Eldridge et al. 1996 (11)] and the reduction in the total arterial
compliance resulted in a 46% increase in Ea (Fig. 5) in
HAPE-susceptible subjects compared with HAPE-resistant
control subjects (0.10 " 0.01 vs. 0.15 " 0.02 mmHg/mL; P !
0.076). The heightened hypoxic response observed in the
arterial compliance of HAPE-susceptible subjects was reflected
as a 31% increase in Ea at sea level (0.15 " 0.02 vs. 0.20 "
0.02 mmHg/mL; P ! 0.064). No change was observed in the
HAPE-resistant control subjects with exposure to hypoxia
(0.10 " 0.01 vs. 0.11 " 0.01 mmHg/mL; P & 0.05).

Distensibility. As described above, a distensible vessel
model was used to calculate distal, small artery distensibility
from a fit to the multipoint pulmonary vascular pressure-flow
relationship (Fig. 6). Overall, HAPE-susceptible subjects had

reduced distensibility compared with HAPE resistant subjects,
even at sea level (0.011 " 0.001 vs. 0.021 " 0.002 mmHg#1;
P $ 0.001). Interestingly, the HAPE-susceptible subjects ap-
peared to be operating at, or very near, their maximal disten-
sibility. Both exposure to acute hypoxia and several days at
high altitude failed to elicit any significant changes, unlike the
HAPE-resistant subjects. Sensitivity analysis did not reveal
statistical differences comparing the subjects who had a full
data set (requiring no estimation) with the data set compiled
with the estimated values (Fig. 7).

DISCUSSION

High-altitude pulmonary edema (HAPE) was first identified
and documented by postmortem examination in 1891 and
continues to be the focus of many investigations as the patho-
genesis and underlying risk factors remain uncertain. Over the
years, many mechanisms have been proposed to explain this
disease. Increased pulmonary pressures is a hallmark of HAPE,
but Scherrer et al. demonstrated that exaggerated pulmonary
hypertension alone is not sufficient to trigger HAPE (54).
Uneven hypoxic vasoconstriction is the most commonly pro-
posed mechanism, possibly mediated by an abnormal produc-
tion of nitric oxide, a potent vasodilator synthesized by endo-
thelial cells. HAPE-susceptible subjects have been shown to
have lower exhaled nitric oxide levels compared with HAPE-
resistant subjects in hypoxia (5) and at altitude (9), and inhaled
nitric oxide has been shown to induce larger decreases in PA
pressures when given to HAPE-susceptible subjects, which
suggests possible endothelial dysfunction and defective nitric
oxide synthesis in HAPE-susceptible subjects (55). Known
differences are not limited to the relaxation factors. HAPE-
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susceptible subjects have also been shown to have increased
sympathetic activity and increased vasoconstrictors such as
angiotensin II and endothelin I (53, 54). Here, we investigated
another potential component to this puzzle, pulmonary vascu-
lar distensibility.

Our analysis demonstrates for the first time that HAPE-
susceptible subjects have significantly reduced distensibility
compared with HAPE-resistant control subjects even in nor-
moxic, sea level conditions. Although the study was not de-
signed to answer the question of the causality of HAPE, the
striking differences in distensibility between the HAPE-sus-
ceptible and HAPE-resistant subjects suggest that either 1)
reduced distensibility is a risk factor for the development of
HAPE or 2) the current belief that HAPE can be completely
reversed within several days (14, 16, 34, 45, 63) is flawed and
there are potential life-long consequences. This could provide
an explanation as to why previous HAPE episodes increase risk
for the development of future ones.

Here we show that HAPE-susceptible subjects had an almost
50% decrease in %, suggesting they have stiffened small, distal
pulmonary arteries. The HAPE-susceptible subjects also had
heightened increases in PAPP with exercise, which likely
reflects proximal artery stiffening, independent of the distal
vasculature (68). Contrary to several other studies that have
failed to show changes with exercise at sea level in HAPE-
susceptible subjects (24, 66), we observed exercise-induced
stiffening in both the proximal and distal pulmonary arteries.
No differences in PAPP were observed at rest between the
HAPE-susceptible and HAPE-resistant subjects. The combina-

tion of these findings indicates that HAPE-susceptible subjects
have an impaired ability to vasodilate in response to increased
blood flow.

Increased pulmonary pulsatile load is associated with in-
creased risk of RV failure in other types of pulmonary vascular
disease (30, 41, 67); however, the chronic impact of this
increased pulsatile loading on RV function remains to be
studied in HAPE. It would be of interest to serially study
HAPE-susceptible subjects with exercise cardiac magnetic
resonance imaging methods. Based on our findings, we antic-
ipate that HAPE-susceptible subjects are at increased risk of
right heart dysfunction due to the chronic effects of decreased
pulmonary vascular distensibility.

These data also demonstrate a significant hypobaric effect. It
has been previously documented that exposure to high altitude
causes increased pulmonary artery pressures (24, 27, 35, 60,
61), but here we also found decreased total arterial compliance,
increased Ea, and decreased %. Furthermore, there was a
significant effect of hypobaric hypoxia in HAPE-susceptible
subjects. When exposed to hypobaric hypoxia, HAPE-suscep-
tible subjects had further decreases in total arterial compliance
and further increases in Ea compared with hypobaric normoxia.

This trend was not observed in the HAPE-resistant subjects.
A factor not frequently considered in the pathogenesis of

HAPE is sex, even though uncontrolled retrospective analyses
of cases in ski resorts suggest that postpubescent and premeno-
pausal women may be protected from the development of the
disease (25, 59) and occurrence rates in prepubescent children
are identical between the sexes (10). Sex differences in the
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Fig. 6. Distensibility (%) calculated with the method of suc-
cessive iterations (Eq. 2).
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pulmonary vasculature in response to acute and chronic hyp-
oxia have been well documented in animal studies (4, 39, 47,
49, 58, 71, 72), and it is noteworthy to mention that healthy
adult women of reproductive age have more distensible pul-
monary circulations than age-matched healthy adult men (1,
33, 42). Therefore, it seems possible that estrogen plays a
protective role and should be further investigated.

Our findings of HAPE-susceptible subjects having decreased
compliance and decreased distensibility compared with HAPE-
resistant control subjects in all conditions suggests that im-
paired vasodilation is a feature of HAPE. Reduced distensibil-
ity has been shown to be a predictor of mortality in patients
with heart failure and a potential target for vasodilator therapy
for patients with pulmonary hypertension (37). It could also
prove to be a target for the development of future treatments of
HAPE.

Limitations of this study include altered acclimatization
periods at altitude for two subjects. Subjects were typically
studied 40–44 h after arriving to altitude, whereas one subject
was studied at 36 h and one at 60 h. Another limitation was the
unobtainable Pw pressures for several of the subjects, as well as
no directly measured pulse pressures, which required us to
compute pulse pressures based on established systolic-diastolic-
mean PA pressure relationships that are well established in
other conditions and diseases but unknown in the context of
HAPE. Sensitivity analysis of Pw and % did not highlight any
notable differences, but this analysis was not possible for the
pulse pressures. HAPE-susceptible subjects were also identi-

fied in retrospect, so further investigation is needed to deter-
mine whether these are inherent differences that result in
increased susceptibility or whether they occur subsequent to
the HAPE episode.

In conclusion, HAPE-susceptible subjects have increased
proximal and distal pulmonary arterial stiffening in response
to exercise, as well as an exaggerated hypoxic response
leading to decreased total arterial compliance and increased
effective arterial elastance. HAPE remains a multifactorial
condition with no singular identifying mechanism or muta-
tion able to account for all clinically observed features.
Here, we identify another metric of interest in describing
HAPE. Reduced distensibility could either be a potential
risk factor for the development of HAPE or evidence that
consequences of HAPE are long-lasting after return to sea
level. It is possible that HAPE causes irreversible damage to
the lungs themselves, which could account for the reduced
distensibility and the well-documented reduction in lung
volumes found in HAPE-susceptible subjects (11, 62). Fur-
ther investigation is needed to address whether these
changes occur prior or subsequent to HAPE development
and the consequences of chronically increased pulsatile load
on the right ventricle.
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