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Abstract
This study uses a one-dimensional fluid dynamics arterial network model to infer changes in hemodynamic quantities asso-
ciated with pulmonary hypertension in mice. Data for this study include blood flow and pressure measurements from the
main pulmonary artery for 7 control mice with normal pulmonary function and 5 mice with hypoxia-induced pulmonary
hypertension. Arterial dimensions for a 21-vessel network are extracted frommicro-CT images of lungs from a representative
control and hypertensive mouse. Each vessel is represented by its length and radius. Fluid dynamic computations are done
assuming that the flow is Newtonian, viscous, laminar, and has no swirl. The system of equations is closed by a constitutive
equation relating pressure and area, using a linear model derived from stress–strain deformation in the circumferential direc-
tion assuming that the arterial walls are thin, and also an empirical nonlinear model. For each dataset, an inflow waveform is
extracted from the data, and nominal parameters specifying the outflow boundary conditions are computed from mean values
and characteristic timescales extracted from the data. The model is calibrated for each mouse by estimating parameters that
minimize the least squares error between measured and computed waveforms. Optimized parameters are compared across the
control and the hypertensive groups to characterize vascular remodeling with disease. Results show that pulmonary hyperten-
sion is associated with stiffer and less compliant proximal and distal vasculature with augmented wave reflections, and that
elastic nonlinearities are insignificant in the hypertensive animal.

Keywords Pulmonary hypertension · 1D fluid dynamics model · Linear and nonlinear wall model · Parameter estimation ·
Statistical model selection · Wave intensity analysis · Impedance analysis
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1 Introduction

Pulmonary hypertension (PH) is defined as an invasively
measured mean pulmonary arterial blood pressure (mPAP)
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greater than 25mmHg (Simonneau et al. 2013). It is asso-
ciated with vascular remodeling, which adversely affects
the properties of the cardiopulmonary system, including
pulmonary vascular resistance (PVR), proximal and dis-
tal arterial stiffness, compliance, and amplitude of wave
reflections (Nichols et al. 2011). ThemPAPandPVRare con-
ventionally used diagnostic markers for PH but are not good
indicators of disease severity (Wang and Chesler 2011). Here
we use proximal arterial stiffness and the wave reflection
amplitude as physiomarkers for detecting disease progres-
sion (Castelain et al. 2001; Hunter et al. 2011). In particular,
the proximal arterial stiffness is an excellent predictor of
mortality in patients with pulmonary arterial hypertension
(Gan et al. 2007). Quantifying relative distributions of prox-
imal and distal arterial stiffness (or compliance) and wave
reflections in elevating the mPAP and PVR is vital for under-
standing disease mechanisms.

In this study, we setup and calibrate a mathematical model
predicting wave propagation in the pulmonary vasculature in
C57BL6/J male mice with normal pulmonary function [con-
trol group (CTL), n = 7] and in mice with hypoxia-induced
pulmonary hypertension [hypertensive group (HPH), n = 5]
(Tabima et al. 2012; Vanderpool et al. 2011). The novelty of
this study is the integration of high fidelity morphometric
and hemodynamic data from multiple mice with a one-
dimensional (1D) model of large pulmonary arteries coupled
with a zero-dimensional (0D) model of the vascular beds.
This is achieved by incorporating available data at each stage
of themodeling including network extraction, parameter esti-
mation and model validation. The outcome is used to infer
disease progression by quantifying relative changes in PVR,
proximal and distal arterial stiffness, compliance, and ampli-
tudes of wave reflections, across the two groups (CTL and
HPH). Moreover, we investigate the influence of presumed
elastic nonlinearities in thewallmodel on theparameter infer-
ence. This approach allows us to study disease impact on
the distal vasculature by predicting waveforms from multi-
ple locations in the simulated network, which are difficult to
obtain experimentally.

1.1 Experimental studies

To understand the relation between hemodynamics and vas-
cular remodeling, it is essential to analyze morphometric
and hemodynamic time-series data during disease progres-
sion. Morphometric data can be obtained by noninvasive
procedures, like magnetic resonance imaging (MRI) or com-
puted tomography (CT) scans (Meaney and Beddy 2012),
but dynamic pulmonary blood pressure can only be obtained
from right heart catheterization (Rich et al. 2011). More-
over, in humans, the disease takes years to develop making
it difficult to study its progression. An alternative means to
gain understanding is to study disease progression in mouse

models. An advantage is that mice have a relatively short life
span and it is feasible to generate specific disease groups (e.g.
micewithHPH)within a short time-span (<1month). Exper-
imental studies in mice are typically done within a specific
genetic strain, in order to limit variation among individuals.
Inmost studies [e.g. Pursell et al. (2016), Tabima et al. (2012)
and Vanderpool et al. (2011)], hypoxia is used to induce
pulmonary hypertension. This type of PH (Group III) is clin-
ically manifested in human patients with hypoxia and lung
disease (Simonneau et al. 2013), believed to be initiated by
remodeling of the vascular beds [e.g.microvascular vasocon-
striction and rarefaction (Wang and Chesler 2011)] followed
by progressive remodeling of the large arteries (Tuder et al.
2007). Therefore, investigation of pulmonary hypertension
in mice with hypoxia may provide vital understanding of
disease mechanisms in humans with similar pathology.

1.2 Modeling studies

Examples of previous modeling efforts include lumped 0D
(Lankhaar et al. 2006; Lumens et al. 2009), distributed 1D
(Acosta et al. 2017; Lungu et al. 2014; Qureshi et al. 2014)
and locally complex three-dimensional (3D) (Tang et al.
2012; Yang et al. 2016) models. Lankhaar et al. (2006) com-
bined a 0D 3-element Windkessel model with hemodynamic
data from PH patients to quantify right ventricular afterload.
Lumens et al. (2009) developed a geometric heart model
coupled with a closed loop 0D model of the entire circu-
lation to predict ventricular hypertrophy in patients with PH.
Tang et al. (2012) and Yang et al. (2016) constructed patient-
specific 3Dmodels of pulmonary arteries to study shear stress
(Tang et al. 2012), and PVR in pre- and postoperative situa-
tions (Yang et al. 2016). To our knowledge, only Lungu et al.
(2014) used a coupled 1D–0D model of the main pulmonary
artery (MPA) to study diagnostic parameters including PVR,
mPAP, arterial stiffness and compliance in patients with and
without PH. Studies byAcosta et al. (2017) andQureshi et al.
(2014) used a 1D framework to develop distributedmodels of
the pulmonary arteries and veins to study cardiopulmonary
coupling (Acosta et al. 2017) and microvascular remodeling
(Qureshi et al. 2014) during PH. Yet, none of these studies
used actual pressure data for parameter estimation andmodel
validation. Other notable studies using 1D models, but not
investigating pulmonary hypertension, include Blanco et al.
(2014), Mynard and Smolich (2015), Olufsen et al. (2000),
Reymond et al. (2009) and Willemet and Alastruey (2015).
See Boileau et al. (2015), Safaei et al. (2016) and van de
Vosse and Stergiopulos (2011) for an overview of modeling
approaches and computational tools, andHunter et al. (2011),
Kheyfets et al. (2013) and Tawhai et al. (2011) for focused
reviews on modeling pulmonary hypertension.

Most of the above studies consider application to humans.
Only a few of 1D modeling studies have investigated wave

123



Hemodynamic assessment of pulmonary hypertension in mice: a model-based analysis of the…

propagation in systemic (Aslanidou et al. 2016) and pul-
monary (Lee et al. 2016; Qureshi et al. 2017) arteries in
mouse networks. To our knowledge, no studies combine
disease-specific imaging and hemodynamics data to predict
changes in disease. In this study,we expand upon prior results
from Qureshi et al. (2017) by developing a 1D fluid dynam-
ics network model of pulse wave propagation in the large
pulmonary arteries of control and hypertensive mice. We do
so by extracting detailed network information and by opti-
mizing hemodynamic predictions. To set up the 1D domain,
we extract the arterial networks from micro-CT images of a
representative CTL mouse and a mouse with HPH. We com-
bine these networkswith hemodynamic data,measured in the
MPA of eachmouse, to predict pressure and flowwaveforms.
For each vessel in the network, we solve (numerically) fluid
dynamics equations derived from the Navier–Stokes equa-
tions coupled with a constitutive equation relating pressure
and vessel area (i.e. describing the vessel wall mechanics).
We use the measured flow waveform from each mouse as the
inflow boundary condition and use 0D Windkessel models
(Westerhof et al. 2009) to characterize the impedance of the
vascular beds.

As the disease progresses, vascular remodeling changes
the composition of wall constituents (Humphrey 2008). This
affects the local stress–strain response, which is important
for inferring arterial wall stiffness and compliance (Hunter
et al. 2011). We focus on understanding how wall deforma-
tion changes under hypertensive conditions. Specifically, we
aim to study if presumed elastic nonlinearities have a signif-
icant impact on disease progression. To this end, we use a
well-established linear wall model (Willemet and Alastruey
2015; Safaei et al. 2016) as well as an empirical nonlinear
wall model.

The advantage of the linear wall model is that it is easy
to derive from first principles and it has been shown to
be successful within physiological pressure/area ranges for
systemic arteries (Olufsen et al. 2000). Yet, it does not
account for the fact that arteries stiffen with pressure. On
the other hand, detailed, structural hyperelastic wall models
can be derived fromfirst principles, e.g.Holzapfel andOgden
(2010), but they are difficult to analyze due to the large num-
ber of parameters. Inspired by Langewouters et al. (1985),
we introduce a simple empirical nonlinear model with three
key properties: (a) it predicts vessel stiffening with pressure
so that the lumen area approaches a finite limit as pressure
increases, (b) it incorporates an undeformed area (or radius)
corresponding to zero transmural pressure, and (c) it reduces
to the linear wall model under a small strain assumption pro-
viding a basis for model comparison and nominal parameter
estimation.

The process of modeling requires a priori specification of
parameters, including proximal arterial stiffness, total vascu-
lar resistance, and peripheral compliance, which are known

to vary across individuals. This creates the need for methods
to estimate parameters that predict observed hemodynamics
across individual mice. A few recent studies have performed
parameter estimation in blood flow models, including the
study by Eck et al. (2017), which used polynomial chaos
expansion to analyze a stochastic model of pressure waves
in the large systemic arteries, the study by Arnold et al.
(2017),which used an ensembleKalmanfilter (EnKF) to esti-
mate the unknown inflow to a single vessel, representing the
ovine aorta, and the study by Tran et al. (2017), which used
a Bayesian Markov chain Monte Carlo (MCMC) approach
to estimate parameters in a multi-scale three-dimensional
model of coronary arteries. Similarly, in the recent study by
Paun et al. (2018), we used MCMC to estimate parameters
for a 1D model of mouse pulmonary arteries. It should be
noted thatMCMC algorithms come at a substantial computa-
tional cost, making them infeasible for multi-subject studies.
Other studies estimating pressure dynamics using optimiza-
tion algorithmswere done using either 0D (Valdez-Jasso et al.
2011;Williams et al. 2014) or 1D (Lungu et al. 2014)models.
Yet, none of these studies investigated hemodynamic varia-
tion in the pulmonary arterial network.

In this study, we estimate global network parameters that
allow prediction of observed dynamics in both CTL and
HPH groups. We first determine a priori parameter values
for the wall models and boundary conditions. This is done
by combining available data and existing results in the liter-
ature (Alastruey et al. 2016; Reymond et al. 2009). Second,
we solve the overall model using linear and nonlinear wall
models and conduct constrained nonlinear optimization to
estimate parameters predicting the observed dynamics. A
similar approach combining a priori nominal parameterswith
iterative tuningwas used byAlastruey et al. (2016) in amodel
of the human aorta. In this study, blood flow data were avail-
able for all terminal vessels, making it easier to compute
downstream resistance. To our knowledge, our approach esti-
mating parameters for a 1D network model of the pulmonary
circulation using morphometric and dynamic pressure and
flow data is novel relative to these studies.

Similar to previous studies (Lee et al. 2016; Qureshi et al.
2014, 2017), we compare the hemodynamic signatures in
the time and frequency domains for the control and hyper-
tensive animals. We follow Acosta et al. (2017), Lankhaar
et al. (2006) and Lungu et al. (2014) to analyze the estimated
parameters, inferring HPH progression, and to investigate,
using a model selection criterion (Burnham and Anderson
2002; Schwarz 1978), the extent to which the nonlinear wall
model enables accurate prediction of the observed dynamics.

The manuscript is organized as follows: Sect. 2 presents
experimental and mathematical methods including data
extraction procedures, governing equations, parameter esti-
mation and numerical simulations. In Sect. 3, we present
results comparing CTL and HPH hemodynamics, analyzing:
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waveforms predictions along the arterial network, estimated
parameters and their sensitivities to hypertensive conditions,
impedance and wave reflections. Key findings are discussed
in Sect. 4, followed by limitations in Sect. 4.4. Finally, we
state key conclusions in Sect. 5.

2 Methods

2.1 Experimental methods

This study uses existing hemodynamic data and micro-
computed tomography (micro-CT) images from control
and hypertensive mice. Detailed experimental protocols for
extracting the hemodynamic and image data can be found in
Tabima et al. (2012) and Vanderpool et al. (2011), respec-
tively. Both procedures were approved by the University of
Wisconsin Institutional Animal Care and Use Committee.
Below we summarize these protocols and highlight the data
analyzed herein.

2.1.1 Hemodynamic data

The hemodynamic data include dynamic pressure and flow
waveforms from male C57BL6/J mice, average age 12–
13 weeks and average body weight of 24g. The mice were
divided into CTL (n = 7) and HPH groups (n = 5). The
mice in the HPH group were exposed to 21 days of chronic
hypoxia (10% O2 partial pressure) and both groups were
exposed to a 12-h light–dark cycle. Mice were instrumented
to obtain dynamic pressure and flow waveforms in the main
pulmonary artery as described and validated previously by
Tabima et al. (2012) and Schreier et al. (2014). In brief, mice
were anesthetized with an intraperitoneal injection of ure-
thane solution (2 mg/g body weight) and placed on a heating
pad to maintain physiological heart rate. After intubation for
ventilation, the chest wall was removed to expose the right
ventricle. A 1.0 F pressure-tip catheter (Millar Instruments,
Houston, TX) was inserted into the apex of right ventricle
and advanced to the MPA. The stabilized pressure contour
was recorded at 5KHz on a hemodynamic work station (Car-
diovascular Engineering, Norwood, MA, USA). Flow was
measured with ultrasound (Visualsonics, Toronto, Ontario,
Canada) using a 40 MHz probe during catheterization and
recorded, processed and analyzed synchronously with pres-
sure and ECG on the same custom made workstation. Flow
velocity was calculated by velocity time integral using spec-
tral analysis of the digitized broadband Doppler audio signal
obtained in the proximal main pulmonary artery with the
probe in a right parasternal long-axis orientation in the same
location as the catheter. Measurement at this location allows
for a better detection of MPA inner diameter, needed for cal-
culation of volumeflow rate from theflowvelocity. The probe

was angled until themaximal velocity signal was obtained. A
signal averaged flow velocity waveform was then obtained
by tracing the spectral envelop. Measurement of the MPA
inner diameter was taken using the long-axis view from lead-
ing edge to leading edge in B-mode imaging during the end
systole and averaged from three cardiac cycles. MPA inner
diameter was used to convert the instantaneous flow velocity
to instantaneous volume flow rate (q) assuming a flat veloc-
ity profile across the circular cross section. Pressure and flow
waveforms were aligned and signal-averaged using the ECG
as a fiducial point. Twenty consecutive cardiac cycles were
averaged to produce average pressure and average flowwave-
forms.

Representative hemodynamic data and associated fre-
quency domain signatures are shown in Fig. 1 and essential
cardiovascular parameters are summarized in Table 1. We
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Fig. 1 a–d Simultaneously measured flow and pressure waveforms in
MPA of control and hypertensive mice. Each waveform is averaged
over 20 consecutive cardiac cycles. e–h Show associated frequency
domain signatures, where f is the frequency, |Z | is impedance modulus
and θ is the associated phase angle [see Eq. (20)]. Thick black curves
represent the representative control and hypertensive animal for which
simulations are presented in this study
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Table 1 Average hemodynamic characteristics (mean ± SD) for the
control and hypertensive animals

CTL (n = 7) HPH (n = 5)

HR (beats/min)† 533 ± 27 559 ± 21

CO (ml/s)∗ 0.18 ± 0.03 0.15 ± 0.01

mPAP (mmHg) 13.4 ± 3.1 22.1 ± 2.3

sPAP (mmHg) 20.1 ± 3.5 32.3 ± 3.1

dPAP (mmHg) 8.0 ± 3.3 14.0 ± 2.3

pPAP (mmHg) 12.2 ± 1.4 18.3 ± 2.8

PVR (mmHg.s/ml) 77.0 ± 22.7 146.1 ± 23.6

Heart rate (HR), cardiac output (CO), mean pressure (mPAP), systolic
pressure (sPAP), diastolic pressure (dPAP), pulse pressure (pPAP) in
the main pulmonary artery, total pulmonary vascular resistance (PVR)
†P = 0.03; ∗Change due toHPH is insignificant (P > 0.05); P < 0.01
for all other parameters

used the unpaired two-sample t test inMATLAB (ttest2) with
a 95% confidence interval to compare quantities between
the two groups. In the hypertensive mice, we found that the
heart rate (HR), main pulmonary artery mean (mPAP), sys-
tolic (sPAP), diastolic (dPAP), and pulse pressure (pPAP),
as well as total pulmonary vascular resistance (PVR) were
significant (P < 0.05), while the decrease in cardiac output
(CO) was statistically insignificant, P > 0.05 respectively.
Moreover, it can be noted from Fig. 1c (the magenta curve),
and Fig. 1d (the red curve) that there is a borderline animal
in each group but none of them can be classified as a clear
outlier. It is possible that a CTLmouse is mildly hypertensive
and that one of the HPHmice is more resilient to the hypoxic
conditions. Such animals were retained in our analysis to
represent a more realistic population sample.

2.1.2 Imaging data

Stacked planar X-ray micro-CT images of pulmonary arte-
rial trees were obtained from male C57BL6/J mice, average
age 10–12 weeks, under control (healthy mice) and 10 days
of hypobaric hypoxia at 10% O2 partial pressure protocols.
Detailed descriptions of animal handling and lung prepa-
ration can be found in Vanderpool et al. (2011), whereas
details of the micro-CT image acquisition are described in
Karau et al. (2011). In brief, mice were anesthetized with
intraperitoneal injection of pentobarbital sodium (52 mg/kg
body weight) and then euthanized by exsanguination. The
trachea and the main pulmonary artery were cannulated, and
the heart was dissected away. Pulmonary artery cannula (PE-
90 tubing, 1.27 mm external and 0.86 mm internal diameter)
was positionedwell above the first bifurcation. Excised lungs
were treated with Rho kinase inhibitor and ventilated and
perfused with perfluorooctyl bromide (PFOB), a vascular
contrast agent, and placed in the imaging chamber. The arte-
rial trees were then imaged under a static filling pressure of

6.3 mmHg, while rotating the lungs in the X-ray beam at 1◦
increments to obtain 360 planar images. Each planar image
was averaged over seven frames to minimize noise and max-
imize vascular contrast. The spatial resolution of volumetric
lung scans were between 30 and 40µm. For each lung, iso-
metric 3D volumetric dataset (497 × 497 × 497 pixels) was
obtained, by reconstructing the 360 planar images using the
Feldkamp cone-beam algorithm (Feldkamp et al. 1984), and
converted into Dicom 3.0.

For this study, two representative networkswith 21 vessels
were extracted from images of the control and hypertensive
mice. The 21-vessel networkwas chosen since itwas themost
expansive network that could be identified with a one-to-one
vessel map in both control and hypertensive animals. Net-
work dimensions and connectivities were obtained using the
segmentation protocol described by Ellwein et al. (2016).
This protocol uses ITK-SNAP (Yushkevich et al. 2006) to
create a 3D geometry from Dicom 3.0 files, using semi-
automated “snake evolution” in the regions of interest (the
21 vessels). To distinguish the foreground (vasculature) from
the background (all other parts of the image), image vox-
els must be converted from their grayscale intensity values,
ranging between 0 and 255, to a binary map. ITK-SNAP
provides a voxel mapping function, which requires a lower
and upper threshold separating the foreground from the back-
ground, aswell as a smoothness parameter, which determines
the slope of the mapping function. The imaging data used
here are from an excised lung vasculature, eliminating the
need for an upper voxel intensity bound. To minimize arti-
fact detection, the lower threshold was set at 45 as all voxels
in the vessels had intensities above this value. The default
smoothness value 3.0 was used for simplicity. Paraview (Kit-
ware; Clifton Park, NY) was used to convert file types to vtk
polygonal data (.vtp) allowing us to compute centerlines and
connectivity using the Vascular Modeling ToolKit [VMTK
(Antiga et al. 2008)]. The output from VMTK is a n × 4
matrix representing each vessel by a unique set of coordinates
xi ∈ R

3 (i = 0, . . . , n − 1) and the associated radius value,
ri , computed from the maximally inscribed sphere within
the 3D vessel. Known internal diameter of the contrast filled
cannula (PE-90 tubing) was used to compute a scaling fac-
tor to convert voxels into cm. For the MPA, the radius r0
was computed as a mean of all slices ri between the can-
nulated region and the first bifurcation, whereas the radii of
other vessels were computed as the mean of all slices along
the vessels but away from the junctions. For each vessel, the
length, L , was calculated as the sum of the shortest distances
(li ) between successive points, i.e.
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Fig. 2 1D network segmentation: a the micro-CT image, b 3D smoothed network for centerline extraction, and c the directed graph reflecting
connectivity of vessels in the network. The size of segments in the graph do not reflect their dimensions

r0 = 1

n

∑

i

ri , L =
∑

i

li , where li = ‖xi+1−xi‖,

(1)

i = 0, . . . , n − 1 and n is the total number of samples for
the vessel. The network, in its load free state (i.e. at zero
transmural pressure) is then constructed by assigning L and
r0 = r0 to each vessel. The shared coordinates information is
used to generate a connectivity map of the 3D structure (see
Fig. 2c) using the digraph function in MATLAB (version
16a). Both control and hypertensive networks have the same
connectivity illustrated in Fig. 2c, but the individual vessel
radii and length vary as shown in Table 2.

Finally, while it is known that the largest pulmonary arter-
ies in humans taper along their lengths (Qureshi et al. 2014),
analysis of imaging data from mouse pulmonary arteries did
not allow us to determine taper within individual vessel seg-
ments. In general, pulmonary vasculature bifurcates quicker,
making it harder to determine the tapering in individual ves-
sels. However, improvements in segmentation methods can
allow better quantification of tapering. Nevertheless, even in
mice, the main pathways visibly taper in an exponential fash-
ion. To avoid fitting a specific curve along data that has to be
matched at each bifurcation, we chose to include actual mean
radius measurements for each vessel to naturally account for
tapering pathways.

2.2 Fluid dynamics model

Assuming that blood is incompressible, flow is Newtonian,
laminar and axisymmetric, and has no swirl, conservation of
mass and momentum (Olufsen et al. 2000) are given by

∂A

∂t
+ ∂q

∂x
= 0,

∂q

∂t
+ ∂

∂x

(
q2

A

)
+ A

ρ

∂ p

∂x
= − 2πνr

δ

q

A
,

(2)

where x and t are the axial and temporal coordinates,
p(x, t) = pin(x, t) − pex (mmHg) is the transmural blood
pressure, pin and pex are the pressures acting in and outside
the arterial wall, respectively, q(x, t) (ml/s) is the volumetric
flow rate, A(x, t) = πr2 (cm2) is the cross-sectional area and
r(x, t) (cm) is the vessel radius. The blood density ρ (g/ml)
and the kinematic viscosity ν (cm2/s) are assumed constant.
The momentum equation is derived under the no-slip con-
dition assuming that the wall is impermeable, and that the
velocity of the fluid at the wall equals the velocity of the
wall. To satisfy this condition, we assume that the velocity
profile over the lumen area is flat, decreasing linearly within
the boundary layer with thickness δ = √

νT /2π (van de
Vosse and Stergiopulos 2011).

2.3 Wall model

To close the system of equations, a constitutive equation
relating pressure and cross-sectional area is needed. In this
study,we compare twomodels. A linear elasticmodel (Safaei
et al. 2016) derived from balancing circumferential stress
and strain, and an empirical nonlinear wall model inspired
by Langewouters et al. (1985).

The linear wall model is derived under the assumptions that
the vessels are cylindrical and purely elastic, that the walls
are thin (h/r0 � 1), incompressible and homogeneous, that
the loading and deformation are axisymmetric, and that the
vessels are tethered in the longitudinal direction. Under these
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Table 2 Dimensions of vessels in the 21-vessel network

Vessel index Connectivity (daughters) Control Hypertensive

r0 × 10−1 (cm) L × 10−1 (cm) r0 × 10−1 (cm) L × 10−1 (cm)

1a (2,3) 0.47 4.10 0.51 3.58

2 (4,5) 0.26 4.45 0.26 4.03

3 (6,7) 0.37 3.72 0.37 3.08

4 (8,9) 0.24 2.41 0.25 2.92

5 – 0.13 0.52 0.17 0.65

6 (14,15) 0.32 2.02 0.28 1.60

7 – 0.17 2.12 0.19 0.93

8 (10,11) 0.23 3.11 0.24 2.06

9 – 0.17 1.77 0.17 0.51

10 (12,13) 0.20 2.62 0.22 2.37

11 – 0.16 0.69 0.17 0.88

12 – 0.15 1.40 0.19 1.27

13 – 0.14 0.62 0.15 0.51

14 (16,17) 0.26 0.81 0.27 1.20

15 – 0.19 1.84 0.19 1.55

16 (18,19) 0.25 0.83 0.26 0.71

17 – 0.15 3.02 0.18 1.68

18 (20,21) 0.24 4.69 0.24 3.55

19 – 0.15 1.77 0.18 1.86

20 – 0.22 1.78 0.23 2.24

21 – 0.18 0.55 0.19 1.07

aRoot vessel. Connectivity (i, j), i denotes the left daughter and j the right daughter. Vessels indicated by – are terminal

conditions, the external forces can be reduced to stresses
in the circumferential direction, and Laplace’s law (Nichols
et al. 2011) gives a linear stress–strain relation

p = β

(√
A

A0
− 1

)
, where β = Eh

(1 − κ2)r0
(3)

is the stiffness parameter, defined in terms of Young’s modu-
lus E in the circumferential direction. The associated Poisson
ratio is κ , the wall thickness is h, and the undeformed radius
is r0 at zero transmural pressure (p = 0). A0 = πr20 (cm2)
denotes the undeformed cross-sectional area. Similar to pre-
vious studies [e.g. Olufsen et al. (2000) and Safaei et al.
(2016)], we use κ = 0.5.

The nonlinear wall model relates pressure and area as

p = p1 tan

[
π

γ

(
A

A0
− 1

)]
, (4)

where p1 > 0 (mmHg) is a material parameter that describes
the half width pressure, and γ > 0 is a scaling parameter that
determines the maximal lumen area A∞ as p → ∞, giving

A∞ = (1 + γ /2)A0. (5)

This model is formulated to ensure that A = A0 at p = 0.

2.4 Boundary conditions

Since the system of equations is hyperbolic, boundary condi-
tions must be specified at the inlet and outlet of each vessel,
i.e. the network needs an inflow condition, junction condi-
tions, and outflow conditions.

At the network inlet,we specify aflowwaveformextracted
from hemodynamic data (see Fig. 1). At junctions (all
bifurcations in the network studied),we impose pressure con-
tinuity and conservation of flow, i.e.

pp(L, t) = pdi (0, t) and qp(L, t) =
∑

i

qi (0, t), (6)

where, the subscripts p and di (i = 1, 2) denote the parent
and daughter vessels, respectively.

At the terminal vessels, a Windkessel model (represented
by an R1CpR2 circuit) is used to prescribe the outflowbound-
ary condition (see Fig. 2c) by computing input impedance
Zwk(L, ω) as

Zwk(L, ω) ≡ P(L, ω)

Q(L, ω)
= R1 + R2

1 + ι̇ωR2Cp
, (7)
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where P(L, ω) and Q(L, ω) are the pressure and flow in the
frequency domain,ω = 2π/T is the angular frequency and T
is the length of the cardiac cycle. R1, R2 (mmHgs/ml) denote
the two resistances, and Cp (ml/mmHg) is the capacitance.
Moreover, the total peripheral resistance is RT = R1 + R2,
where R1 represents the resistance of the imaginary blood
vessels immediately beyond the terminal vessel (proximal
vasculature) and R2 is the resistance of the distal vasculature,
whereas Cp denotes the total peripheral compliance of the
vascular region in question. Similar to Qureshi et al. (2017),
Zwk(L, ω) relates the pressure and flow at the outlet of each
terminal vessel via a convolution integral over T .

2.5 Parameter values

Themodel parameters are divided into three groups: hemody-
namics Φh = {T , ν, ρ, δ}, vessel wall stiffness Φw.lin = {β}
for the linear wall model and Φw.nlin = {p1, γ } for the non-
linear wall model, Windkessel Φwk = {R1, R2,Cp} for the
vascular beds.

Hemodynamic parameters are assumed constant. For each
mouse (control and hypertensive), the length of the cardiac
cycle T = 1/HR (s) is extracted from the data. (Mean HR
values for each group are given in Table 1.) The blood den-
sity ρ = 1.057g/ml (Riches et al. 1973) and the kinematic
viscosity ν = 0.0462 cm2/s, measured at a shear rate of
94 s−1 (Windberger et al. 2003). These values represent aver-
age values for mice. As discussed earlier, the boundary layer
thickness is δ approximated by

√
νT /2π ≈ 0.03cm for the

representative mice, which is kept constant throughout the
network. This approximation gives a relatively flat velocity
profile in the larger vessels and an almost parabolic profile
in the smaller vessels.

The nominal vessel wall parameters for the linear and nonlin-
earwallmodels are approximated by combining an analytical
approach, involving linearization of the fluid dynamics
model, with available pressure and flow data. Since hemo-
dynamic data are only available at one location (the main
pulmonary artery), we let the vessel stiffness β be constant
throughout the network. This assumption is supported by
results by Krenz and Dawson (2003), who collated measure-
ments of pulmonary vascular distensibility (= β−1) from 26
studies in 6 different species reporting that within data vari-
ation the vessel distensibility is independent of the vessel
diameter. A similar result was reported in our previous study
(Lee et al. 2016), that compared 1D network models with
homogenous (constant) and heterogeneous (vessel specific)
wall distensibility. Results showed that heterogeneity does
not affect pressure predictions in the MPA, though down-
stream predictions vary between the two cases. Yet without
downstream data it is not possible to determine what strategy

(c) (d)

(b)(a)

Fig. 3 Illustration of nominal parameter estimation for the linear elastic
wall model and the Windkessel outflow conditions. a Approximation
of Zc from the slope of the pressure-flow loop during early ejection,
b estimation of time constant τ by curve fitting, c flow distribution
across a bifurcation to compute the resistance at the terminal points, d
Windkessel model attached at the outlet of terminal vessels

gives the best physiological predictions, as a result we kept
β constant along the network.

Linearization of Eqs. (2) and (3) about the reference state
(A, p) = (A0, 0) provides an expression for the characteris-
tic impedance Zc (Nichols et al. 2011) as

Zc = ρ c0
A0

⇒ c0 = A0Zc

ρ
, (8)

where c0 is thewave speed at p = 0 (see “AppendixB” for the
definition of c0 for the linear (c0.lin) and the nonlinear (c0.nlin)
wall models). For eachmouse, Zc is estimated from the slope
of the pressure-flow loop during early ejection, using the
“up-slope method” (see Fig. 3a) (Dujardin and Stone 1981)
including 95% of the flow during ejection phase.

For the linear wall model, substituting c0 in Eq. (8) with
c0.lin gives

√
β

2ρ
= A0Zc

ρ
⇒ β = 2(A0Zc)

2

ρ
. (9)

Similarly, for the nonlinear wall model, substituting c0 in
Eq. (8) with c0.nlin and using Eq. (9), gives

p1
γ

= (A0Zc)
2

πρ
⇔ p1

γ
= β

2π
, (10)

where β is given by Eq. (9) and p1/γ is the “stiffness” of the
nonlinear wall model. To fully specify the nominal (initial)
values for the parameter inference (see Sect. 2.6 and Table 4),
we set γ = 2 and p1 = β/π . These values give A∞ = 2A0
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cm2. Note that Eq. (10) is only valid if both the linear and
nonlinear models incorporate the same value of A0 at p = 0.

Nominal parameters for outflow boundary conditions must
be computed for each terminal vessel. A priori values for
these parameters can be obtained from distributing the total
peripheral resistance computed in the MPA (RT = p−pc

q , the
ratio of the mean pressure gradient p − pc to mean flow) to
each terminal vessel j as

RT, j = p

q j
,

where q j is the mean flow in vessel j . This expression is
valid, under the assumption that capillary pressure pc drops
to zero and that mean pressure p remains constant across the
arterial network. Theflow to vessel j is estimated by applying
Poiseuille’s law recursively at each junction, giving

qdi = Gdi∑
i Gdi

q p, where Gdi =
(

πr40
8μL

)

di

for i = 1, 2

(11)

is the vessel conductance. Here qdi denotes the mean flow
to vessel i . Similar to previous studies, e.g. Reymond et al.
(2009), the total resistance is distributed as R1, j = aRT, j

and R2, j = RT, j − R1, j , where the a priori value of a = 0.2
(McDonald and Attinger 1965).

It is worth mentioning that alternative approaches involv-
ingMurray’s lawor combinationofMurray’s andPoiseuille’s
law [e.g. see Chnafa et al. (2018)] can be used to approxi-
mate the steady flow distribution within the network, which
may yield different hemodynamic predictions without fur-
ther tuning of the nominal estimates.Moreover, many studies
[e.g. Alastruey et al. (2016)] set R1 equal to characteris-
tic impedance of the associated terminal vessel to impose
a reflection free boundary condition. However, it is known
that arteries experience wave reflection from the vascular
bed. To account for this effect, many studies set R1 indepen-
dent of characteristic impedance as some fraction of the total
resistance and [e.g. see Acosta et al. (2017)], the approach
followed in this study as well.

Finally, as suggested by Stergiopulos et al. (1995), the
total vascular compliance CT (defined in “Appendix A”) can
be calculated by estimating the time constant τ = RTCT by
fitting data to an exponential function of the form

pd(t) = p(td) exp(− (t − td)/τ), (12)

where the diastolic pressure pd(t) decays in time (see
Fig. 3b). Assuming that τ is constant throughout the network,
the compliance Cp, j for each Windkessel can be computed
as

Cp, j = τ

RT, j
. (13)

2.6 Numerical simulations

Similar to previous studies (Olufsen et al. 2000, 2012),
we use the two-step Lax–Wendroff method to solve the
model equations in Sects. 2.2 and 2.3, for the arterial net-
works presented in Table 2. We combine data from Sect. 2.1
with methods described in Sect. 2.5 to estimate nominal
parameters, specifying arterial wall stiffness and boundary
conditions (Sect. 2.4). Convergence to steady state is ensured
by running simulations until the least square error between
consecutive cycles of pressure is less than 10−8, taking about
6 cycles on average. For this study, we fixed the number of
cycles to 7 for all mice.

Tomatch themodel to data, parameters inferredusingopti-
mization include Φlin = {β, RT, j , a, τ } for the linear model
and Φnlin = {p1, γ, RT, j , a, τ } for the nonlinear model. We
define the objective function using sum of squared errors
(mmHg2) as

S(Φ) =
N∑

n=1

(pn − p(tn;Φ))2 , (14)

where N is the length of the time vector spanning one cardiac
cycle, pn is the measured pressure, p(tn;Φ) is the computed
pressure from the inlet of the MPA, and Φ are the param-
eters to be optimized using the linear or the nonlinear wall
models. We use the function fmincon in MATLAB under
the sequential quadratic programming (SQP) gradient-based
method (Boggs and Tolle 2000) to solve the associated least
squares estimation problem

Φ̃ = arg min S(Φ).

For the representative control mouse, optimization executed
in parallel on an iMac (3.1 GHz Intel Core i5, 16 GB
RAM, OS 10.12.6) initializing the parameters with 20 val-
ues drawn from a Sobol sequence with elements within
the specified domain, consisting of an open interval around
the nominal estimates. Results showed no signs of multi-
modality, and the optimization algorithm converged to a
unique minimum regardless of starting point (see Figs. 11–
13 in “Appendix E”). On average convergence required 28
and 52 iterations for the linear and the nonlinear models,
respectively. To reduce computational efforts, efficiency and
faster convergence,we conducted the optimization procedure
for the remaining mice by initializing the parameters with
four initial values, including the nominal and nearby val-
ues. Nominal values for individual mice are given in Table 4
(“Appendix C”), whereas upper and lower bounds as well as
averaged optimal parameters are given in Tables 5 and 6 in
“Appendix D.” The algorithm was iterated until the conver-
gence criterionwas satisfiedwith a tolerance< 10−8 mmHg.
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2.7 Model analysis

Similar to Qureshi and Hill (2015) and Qureshi et al. (2017),
we analyze wave intensity and impedance spectra for further
insight. Wave intensity analysis allows us to quantify the
type and nature of the reflected waves in the time domain,
whereas the impedance analysis provides a frequencydomain
signature, which as shown in Fig. 1 differs between the two
groups.

Wave intensity analysis allows us to separate the simulated
waveforms into their incident (+) and reflected (−) com-
ponents assuming negligible frictional losses. By setting
q = Au, where u is the fluid velocity, the incident and
reflected waves can be approximated by

Γ±(t) = Γ (t0) +
∫ T

0
dΓ±; Γ = p or u.

Here dp± = 1

2
(dp ± ρc du) , du± = 1

2

(
du ± dp

ρc

)
,

(15)

and c is the PWV computed by Eq. (31) (“Appendix B”).
Moreover, the compositewaveformsΓ = p oru are obtained
by

Γ (t) = Γ+(t) + Γ−(t) − Γ (t0), t0 = 0. (16)

Time-normalizedwave intensityWI± (W/cm2/s2) is defined
as

WI± = (dp±/dt) (du±/dt). (17)

WI+ along with dp+ > 0 or dp+ < 0 characterize the
incident waves as compressive or decompressive, whileWI−
and dp− > 0 or dp− < 0 characterize the reflected waves
as compressive or decompressive, respectively. Finally, we
compute a simple wave reflection coefficient IR as the ratio
of the amplitudes of the reflected Δp− to the incident Δp+
pressure waves (Mynard et al. 2008, Li et al. 2016)

IR = Δp−
Δp+

, (18)

which lumps the effects of low and high frequencies origi-
nating at spatially dispersed points of impedance mismatch
throughout the vascular system. Although not desired here,
a general frequency-dependent reflection coefficient can be
computed as defined in Westerhof et al. (1972).

Impedance analysis (IA). Under the assumptions of period-
icity and linearity, the pulsatile pressure and flow waveforms
can be approximated by a Fourier series of the form

s̃(tn) = S̄ +
K∑

k=1

Re[Skei(ωk tn+ϕk )]; n = 0, . . . , N , (19)

where s̃(tn) is the Fourier series approximation of the original
waveform s(tn), tn = n/Fs is the time vector for a given
sampling rate Fs, N = T ×Fs is the length of the signal s(tn),
ωk = 2kπ/T (k = 1, . . . , K ) are the angular frequencies, S̄
is the mean of s(tn), and Sk and ϕk (rad) are the moduli and
phase spectra, associated with each harmonic k, and K is the
smallest resolution of harmonics required for the impedance
analysis. Both, Sk and ϕk , are defined in terms of ak and bk ,
the coefficients of basic trigonometric Fourier series, i.e.

Sk =
√
a2k + b2k , ϕk = tan−1(bk/ak).

Setting s(tn) as p(tn) and q(tn) in Eq. (19), the impedance
spectrum Z(ωk) can be computed as ratios of harmonics of
pressure to flow by

Z(ωk) = P(ωk)

Q(ωk)
≡ Re[Pkei(ωk tn+αk )]

Re[Qkei(ωk tn+βk )]
= Pk

Qk
Re[ei(αk−βk )] ≡ Zk Re[eiθk ], (20)

where Pk and Qk are the moduli and αk and βk the phase
angles of the pressure and flow harmonics, respectively. Zk

are the impedance moduli and θk = αk − βk are the corre-
sponding phases at a given frequency.Note if θk < 0, then the
kth pressure harmonic lags the kth flow harmonic, and vice
versa. The zeroth harmonic is the total pulmonary vascular
resistance (PVR).

2.8 Statistical analysis

Weimplement statistical analysismethods to studyparameter
interference and devise a model selection criteria to deter-
mine the ability of the linear and nonlinear wall models to
predict hemodynamics.

Parameter inference. Optimized parameters and hemody-
namic quantities are compared to assess changes with hyper-
tension. For this analysis, we compare predictions of total
vascular resistance (RT), total vascular compliance (CT), the
compliance ratio (Cp/CT), the resistance ratio (R1/RT), the
wave reflection coefficient (IR), and characteristic timescales
(τ ). Impact of the disease on a given quantity χ , averaged
across the two groups, is inferred by computing an impor-
tance index η as a relative change in χ due to HPH as

η = χHPH − χCTL

χCTL
. (21)

Model selection criterion. The 1D fluid dynamics model is
coupled with a linear and a nonlinear wall model, leading to
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four-dimensional (4D) and five-dimensional (5D) parameter
spaces, respectively. To identify the model that is more con-
sistent with the data, we employ a statistical criterion that
trades off goodness of fit versus model complexity (i.e. the
number of estimated parameters). To this end, we use the
corrected Akaike Information Criterion (AICc) (Burnham
and Anderson 2002) and the Bayesian Information Criterion
(BIC) (Schwarz 1978) defined in Eqs. (22) and (23). The
model with the lower AICc and BIC score is preferred.

AICc = − 2 log(L) + 2D + 2D(D + 1)

N − D − 1
, (22)

BIC = − 2 log(L) + D log N . (23)

Here log(L) is the maximum log likelihood, D is the num-
ber of parameters in the model and N is the total number
of measurements. If the noise is white, i.e. independent and
identicallyGaussian distributed, then log(L) is just a rescaled
version of the sum-of-squares function S(Φ), defined in
Eq. (14). However, a plot of the residuals (see Fig. 10 in
Results section) indicates that the independence assumption
is violated and that the correlation structure of the noise needs
to be taken into account. Under the assumption of multivari-
ate normal noise, the log likelihood is given by

log(L) = −1

2
log(det (2πΣ)) − 1

2
rTΣ−1r, (24)

whereΣ is the covariance matrix and r is the vector of resid-
uals. For the estimation of Σ , we tried different approaches.
We fitted an autoregressive moving average model, ARMA
(p,q), to the time series of residuals, and identified the opti-
mal parameters p and q by minimizing the BIC score. We
then used the standard procedure proposed by Box and Jenk-
ins (1970) to estimate the covariance matrix. Alternatively,
we fitted a Gaussian process (GP) to the time series, using a
variety of standard kernels: squared exponential, Matérn 5/2,
Matérn 3/2, neural network kernel and a periodic kernel; see
Rasmussen and Williams (2006) for details.

For the BIC and AICc scores, we need the maximum like-
lihood configuration of the parameters. This would require
an iterative optimization scheme, where for each parameter
adaptation, the covariance matrix would have to be recom-
puted. As this would lead to a substantial increase in the
computational costs, we approximated the maximum likeli-
hood parameters by the parameters thatminimize the residual
sum-of-squares error of Eq. (14).

3 Results

In this section, we present results of numerical simulations
predicting pressure and flowwaveforms along the pulmonary

arterial network for a representative control and hypertensive
mouse followed by a comparison of estimated parameter val-
ues.

3.1 Hemodynamics

Figure 4 shows optimized pressure and flowwaveforms for a
representative control (left) and hypertensive (right) animal
using the linear (dashed) and nonlinear (solid) wall mod-
els. Results were obtained estimating the least squares error
between measured and computed waveforms in the MPA.
The box and whisker plot (Fig. 4a) summarizes the least
squares errors S (reported in Table 6 in “Appendix D”) com-
paring the measured and computed waveforms in the MPA
(vessel 1). Results show that both wall models (linear and
nonlinear) are able to fit the data well, and the least squares
error is smaller for the hypertensive animals.

Even though both models provide similar fits in the MPA,
the twowall models lead to different predictions in the down-
stream vasculature. For the control mouse, the nonlinear wall
model leads to higher pressure in the downstream vascula-
ture for the control mouse. With the linear wall model, the
mean pressure drops (Δplin ≈ 4) mmHg from the MPA
to the terminal vessels, whereas for the nonlinear model
Δpnlin ≈ 2 mmHg. Moreover, the nonlinear wall model pre-
dicts a notch in the pressure and flow waveforms during the
ejection phase, not observed with the linear wall model (dis-
played in panels 2, 8 and 13). Without more data from the
downstream vessels, we are not able to validate which model
is more accurate. Finally, it should be noted that these differ-
ences cannot be observed in predictionswith the hypertensive
animal, likely since the vessel wall is significantly less com-
pliant.

Figure 5, depicting the pressure-area relationship in the
MPA, gives further insight into the behavior of the linear and
nonlinear wall mechanics. As expected, results show that
for both groups the nonlinear wall model yields area predic-
tions that are concave down implying increased stiffening
at higher pressures. Higher compliance in control animals
leads to more significant deformation despite the observa-
tion that the unstressed radius is larger in the hypoxic animals
(r0 = 0.051 ± 0.005 vs. 0.047 ± 0.002cm, from Table 2).
Another interesting observation is the larger MPA area, for
the control animal, predicted by the nonlinear wall model at a
given working pressure. This could be a consequence of not
being able to constrain the vessel area during the optimiza-
tion, of correlations among the estimated parameters (e.g.
if the vessel stiffness β (linear model) or p1/γ (nonlinear
model) are correlated with the proximal resistance r1, the
two models may place optimal estimates at different stiff-
ness/resistance ratios), or lack of data in the downstream
vasculature.
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Fig. 4 Pressure and flow predictions along the pulmonary arterial net-
work using linear (dashed line “- -”) and nonlinear (solid lines “–”)
wall models. Results are shown for a representative control (left) and

hypertensive (right) mouse. The center panel A shows the least squares
error avenged across CTL and HPH groups
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Fig. 5 Pressure-area plots corresponding to the linear and nonlinear
wall models at the midpoint of the MPA for the control mouse (a) and
hypertensive mouse (b)

3.2 Parameter estimates

Figure 6 summarizes the variation in optimized parameters
for the two groups. Parameters, used to generate Fig. 6, along
with P values assessing the significance of change due to
HPH, are given in Table 6 in Appendix D.

The arterial wall stiffness is larger in mice with HPH (a–c).
This claim is supported by a statistically significant increase
in the stiffness parameters for both models. For the linear
model, a significantly larger value of the stiffness parameter
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Fig. 6 Box and whisker plots summarizing the optimized parameter
values for the CTL (n = 7) and HPH (n = 5) groups. On each box,
the horizontal bar represents the population median, whereas the circle
represents the population mean, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme data points
the algorithm, with the exception of outliers, which are plotted with a
red plus sign. Top: a stiffness (β), b half width pressure (p1), cmaximal
area (γ ), d pulmonary vascular resistance (RT). Bottom: e total vascu-
lar compliance (CT), f peripheral-to-total compliance ratio (Cp/CT), g
characteristic timescale τ , and h resistance ratio a = R1/RT. Parame-
ter values for individual mice using both models as well as a P values
assessing the significance of change due to HPH are provided in Table 6
in “Appendix D”

β is estimated (a) (P < 0.01). For the nonlinear wall model,
increased stiffness is predicted by an increase in the param-
eter p1 (P < 0.01) representing the half width pressure (b),
and a decrease in the constant γ (P < 0.05), represent-
ing the maximally expanded area (c). This is not surprising
since β and p1 have the same units and are proportional (see
Eq. (10)). In addition, smaller γ leads to a smaller maximal
area A∞ [see Eq. (5)], indicating stiffer walls.

Compliance distributions between the network (Cv) and the
vascular beds (Cp) are shown in Fig. 6e, f. Here the total
compliance (CT) for the entire vasculature is computed as

CT ≡ Cv + Cp =
∑

i

Cv,i +
∑

j

Ĉp, j , (25)

whereCv is the total network compliance obtained as a sumof
compliance estimatesCv,i for each vessel i , computed for the
linear or nonlinear wall models as functions of the diastolic
blood pressure and area [Eqs. (28) and (29) in “AppendixA”],
while Ĉp, j = (R2, j/RT, j )Cp, j is the weighted compliance,
computed as suggested byAlastruey et al. (2016), whereCp, j

denote the Windkessel capacitance [Eq. (7)] associated with
each terminal vessel j .

Results show that the total vascular compliance CT

decreases with hypertension (P < 0.01) (Fig. 6e). Com-
paring with Fig. 6a–d, this behavior is anticipated given the
reciprocal relations between vessel compliance and stiffness
[Eqs. (28) and (29)] and peripheral compliance and total
resistance (Eq. 13). The nonlinear model predicts a smaller
compliance for both groups due to an increased stiffening
with pressures (P < 0.01). Figure 6f shows the compliance
distribution via the ratio Cp/CT. Results with the linear wall
model reveal that Cp reduces to 70% of CT (P < 0.01)
under hypertensive conditions (compared to 80% under con-
trol), indicating that vascular beds have been remodeledmore
by the disease. On the contrary, we found that nonlinear
wall model predicts an increase in the ratio Cp/CT of 80%
in hypertension compared to 76% under control conditions.
However, we found this change to be statistically insignifi-
cant (P > 0.05).

The total vascular resistance RT is computed as

1

RT
=

∑

j

1

RT , j
where RT , j = R1, j + R2, j , (26)

where j is the terminal vessel index. Its distribution within
the vascular beds is depicted in Fig. 6d, h. In this study,
we estimated the proximal and distal components R1, j and
R2, j as described in Sect. 2.6. Results show that for both wall
models RT increases under hypertensive conditions (d) (P <

0.01). For the linear wall model, this increase is dominated
by a significant increase in R1, evidenced by the increase in
the resistance ratio R1/RT (h) (P < 0.01). Although R1/RT

also slightly increases for the nonlinear model, the increase
is statistically insignificant (P > 0.05).

The characteristic timescale τ = RTCT decreases under
hypertensive conditions (Fig. 6g). Although, the nonlinear
model predicts a smaller τ for all animals, the change in τ is
statistically insignificant (P > 0.05) for both the linear and
nonlinear wall models.

3.3 Wave intensity analysis

Results of the wave intensity analysis (WIA) allow us to
investigate the behavior of the incident and reflected waves.
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(a) (b)

(d)(c)
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Fig. 7 Wave intensity analysis comparing the linear and nonlinear wall
models for the control (a, c, e, g) and the hypertensive (b, d, f, h) mice.
a, b Separation of the pressure wave into its incident and reflected
components. The solid black curves represent the composite pressure
waveforms, c, d the reflection coefficients averaged across the CTL and
HPH groups. e–h The associated wave intensity profiles

Separation of the pressure and flow velocity waves into
their incident and reflected components requires estimates of
PWV (see Eq. (15)), which for the data at best can be approx-
imated as constant. Moreover, since the resulting patterns
of the reflected waves are sensitive to the PWV estima-
tion technique (Qureshi and Hill 2015), in this study, the
wave intensity analysis is only performed on the simulated
waveforms for which the dynamic PWV can be computed
explicitly.

Figure 7 shows separation of the pressure waveforms (a,
b) into their incident and reflected components and the asso-
ciated wave intensities (e–h). The group averaged reflection
coefficients IR , quantifying the magnitude of the reflections,
are shown in panels (c) and (d). Results show that the ampli-
tudes of the reflected waves are bigger in the hypertensive
mice (b) leading to a bigger wave reflection coefficient,

shown inpanel (d). Similar to stiffness and resistanceparame-
ters, the increase in IR was found to be statistically significant
(P < 0.05 and P < 0.01 for the linear and nonlinear wall
models, respectively). Moreover, the effects of elastic non-
linearities on the amplitudes of the incident and reflected
waves are minor (the increase in IR is negligible across the
two models) (c, d).

Figure 7e–h presents thewave intensity profiles associated
with the separated pressure and velocity waves. The inner
panels show zoomed intensities around peak systole. Again,
the amplitude of the incident wave is higher for hypertensive
mice [compare panels (e, g) with (f, h)]. For both groups,
the nonlinear wall model gives rise to a smaller amplitude
incident wave (compare panels e–h). Similar patterns are
observed for the reflected waves. One notable difference, for
both groups, is that the nonlinear model gives rise to more
oscillations of the reflected wave.

3.4 Impedance analysis

Figure 8 depicts the impedance moduli |Z | and phase spectra
θ computed from the measured and simulated waveforms.
Dashed lines show simulation results and solid black lines
show data. Panels (a, c, e, g) show results from a control
mouse and panels (b, d, f, h) show results from a hypertensive
mouse. The impedance spectrawere generated using Eq. (20)
and plotted for the first 14 harmonics including the mean
component (zeroth harmonic).

While time-varying simulations fit the data well, Fig. 8
shows characteristic differences in frequency domain signa-
tures between the linear and nonlinear wall models. First,
the zeroth frequency components do not vary between mod-
els. Comparison of moduli spectra (a–d) show that the linear
wall model better captures the frequency response of the
original system. However, both models miss the spike in
the impedance moduli at the third harmonic (about 30Hz)
observed for the representative control mouse (a, c). This
should be contrasted with results from the hypertensive ani-
mal, where both models predict the low-frequency behavior
well (b, f). At higher frequencies, particularly after the ninth
harmonic, the nonlinear wall model deviates from the mea-
sured impedance. In addition, the associated phase (θ ) dips
below zero indicating persistence of pressure harmonics,
which precede the flow harmonic. Again, the linear wall
model deviates less at higher frequencies and its phase oscil-
lates about zero.

3.5 Statistical analysis

In this section, we compare estimated hemodynamics quanti-
ties pertinent to analysis of disease progression in HPHmice.
To do so, we calculate an importance index (η) computed

123



Hemodynamic assessment of pulmonary hypertension in mice: a model-based analysis of the…

0 20 40 80 10006
0

20

40

60

80

100
|Z

| (
m

m
H

g 
s/

m
l)

Control (Linear)

Data
Simulation

(a)

0 20 40 80 10006
0

50

100

150

200

|Z
| (

m
m

H
g 

s/
m

l)

Hypertensive (Linear)

Data
Simulation

(b)

0 20 40 80 10006
-50

0

50

θ 
(D

eg
re

e)

(c)

0 20 40 80 10006
-50

0

50

θ 
(D

eg
re

e)

(d)

0 20 40 80 10006
0

20

40

60

80

100

|Z
| (

m
m

H
g 

s/
m

l)

Control (Nonlinear)

Data
Simulation

(e)

0 20 40 80 10006
0

50

100

150

200

|Z
| (

m
m

H
g 

s/
m

l)

Hypertensive (Nonlinear)

Data
Simulation

(f)

0 20 40 60 80 100
f (Hz)

-50

0

50

θ 
(D

eg
re

e)

(g)

0 20 40 60 80 100
f (Hz)

-50

0

50

θ 
(D

eg
re

e)

(h)

Fig. 8 Impedance spectra comparing the effects of linear (dashed line
“–”) and nonlinear wall models (dashed dotted line “-.”) compared to
data (solid black lines) for a control (cyan) and a hypertensive (magenta)
animal. Impedance moduli (importance of essential hemodynamic, b,
e, f) and phase spectra (c, d, g, h) are plotted for the first 14 harmonics

from Eq. (21) using quantities averaged across the CTL and
HPH groups.

Figure 9a shows predictions of η for the essential cardio-
vascular quantities (summarized in Table 1), whereas Fig. 9b
does the same for the model parameters. Positive or nega-
tive values indicate an increase or a decrease in the quantity
due to HPH. Moreover, a value of 1 (or −1) denote a 100%
change in the quantity.

Results show that peripheral vascular resistance (RT) and
compliance (CT,Cv,Cp) significantly contribute to differ-
entiating between control and disease for the hypertensive
animals (η > 1), whereas the resistance ratio R1/RT is
important for predictions with the linear model (η = 1.5),
but not for predictions with the nonlinear model η = 0.1.
A similar observation was made for the nonlinear stiffness
parameters, p1/γ that is more important than the linear
stiffness parameter β. Though both of these contributed
significantly to distinguishing control versus hypertension.
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Fig. 9 a Importance of essential hemodynamic parameters computed
comparing model predictions with data. See Table 1 for abbreviations
on the abscissa. The figure show predictions of arterial stiffness β for
the linear and p1/γ for the nonlinear model. In addition, we compare
predictions of total vascular resistance (RT), total vascular compliance
(CT), total network (vessel) compliance (Cv), total peripheral (vascular
bed) compliance (Cp), characteristic time constant (τ ), wave reflection
coefficient (IR), and resistance ratio (R1/RT)

Finally, the wave reflection coefficient IR and the time con-
stant τ also differ between control and disease but at a smaller
scale (η < 0.5).

Finally, we use statistical model selection criteria to deter-
mine which wall model is more consistent with the available
hemodynamic data. Since the simple least squares error
shows no difference between the two wall models for the
hypertensive mouse, the model selection was done for the
representative control mouse only. Specifically, we employ
two model selection criteria (AICc and BIC), and model the
residual correlation using the statistical ARMA model, and
the GP models with different kernels (squared exponential,
Matérn 3/2, Matérn 5/2, neural network and periodic kernel),
as described in Sect. 2.8. We estimated the hyperparame-
ters of the GP covariance matrices from the time series of
residuals plotted in Fig. 10 by maximum likelihood. This
was done by either using standard optimization algorithms
involving maximizing the combined likelihood for the linear
and the nonlinear models (Rasmussen and Williams 2006),
or by separately finding the hyperparameters for the linear
and the nonlinear models and then averaging the covariance
matrices. Since the correlation structure of the noise depends
on the experimental protocol and is independent of themodel
assumptions, the latter approach can be implemented under
the constraint that the covariance matrices are the same for
both wall models. We found that both approaches yield sim-
ilar results to optimizing the GP hyperparameters for the
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Fig. 10 Residual time series, as given by the difference between the
measured and the simulated pressure signal corresponding to the linear
and nonlinear wall model

residuals of both wall models. For simplicity, we applied
the latter procedure to the ARMA model as well.

All the GP models and the ARMAmodel were consistent
in indicating lower AICc and BIC scores for the linear model
compared to the nonlinear model, see Table 3. This implies
that the linear model is preferred according to AICc and BIC.

4 Discussion

In this section, we discuss our findings in physiological (CTL
vs. HPH) and modeling (Linear vs. Nonlinear wall mechan-
ics) contexts.

4.1 Inference of disease progression: CTL versus HPH

In this study, we used micro-CT images to set up anatomical
networks and combined themwith hemodynamic predictions
from a 1D model. We calibrated the model for seven control
and five hypertensive mice, estimating key parameters (large
vessel stiffness, peripheral vascular resistance, peripheral
vascular compliance, wave reflection coefficient) that char-
acterize vascular remodeling due to pulmonary hypertension.

Stiffness, compliance, and resistance. Comparison between
the two groups (independent of the wall model) shows
that hypertensive mice exhibit stiffer vessels both prox-

imally (within the network), and in the microcirculation
(represented by the Windkessel models) reflecting a rather
advanced stage of HPH. In this study, we attribute changes
in total resistance RT and compliance CT to both functional
(vasoconstriction) and structural (rarefaction) microvascular
remodeling, known to elevate themPAP (Qureshi et al. 2014;
Wang and Chesler 2011). Changes in the large vessel param-
eters, p1 and γ for the nonlinear model and β for the linear
model as well as the unstressed vessel radius r0, contribute
to the stiffness of the proximal vessels.

The results presented here show that the parameter with
the largest impact is RT. This is expected physiologically, as
the disease progresses from the microvasculature to the large
vessels. Almost as significant are changes in vessel stiffness
(p1/γ and β) reflecting that the large vessels also stiffen,
but with a relatively small change in r0 indicating that the
large vessels have not decreased in size. These results also
reveal a significant decrease in total vascular compliancewith
hypertension (Fig. 6e). As for the compliance distribution,
the average values of Cp/CT ≈ 80%, in both groups, sug-
gest that the majority of the compliance is located in the
vascular beds (Fig. 6f). This is unlike the systemic circula-
tion where the aorta is the main contributor to compliance,
contributing more than 50% of the total systemic compliance
(Ioannou et al. 2003). Our finding of Cp/CT > 0.7 for the
CTL animals compliments the experimental observation by
Presson et al. (1998), who found ∼ 65% of the total pul-
monary compliance in vessels with diameters < 40µm. The
smallest vessels in our networks have diameters of 260µm
for the control mice (vessel #5 in Table 2) and 300µm for the
hypertensive mice (vessel # 13 in Table 2). Thus, the vessels
in diameter range between these diameters and 40µm were
also lumped into the Windkessel models, justifying a value
of Cp > 65%. So, the reasons we may be getting a relatively
small network compliance (Cv ≈ 20%) could be due to the
fact that not enough of the large network is included in the
model, and that adding more generations may change the
current value of Cp/CT.

Moreover, the linear wall model shows a significant
decrease in the compliance ratio Cp/CT under HPH, sug-
gesting a greater compliance loss due to remodeling of the
vascular beds than for the large vessels. Although, the non-

Table 3 AICc and BIC scores for the linear and nonlinear wall model with the covariance matrices obtained using ARMAmodel and five Gaussian
process (GP) models with squared exponential, Matérn 3/2, Matérn 5/2, neural network and periodic covariance kernels

Score type & wall model ARMA GP squared exponential GP Matérn 3/2 GP Matérn 5/2 GP neural network GP periodic

AICc linear −4418 −4260 −4304 −4396 −4436 −4252

AICc nonlinear −4279 −4152 −4198 −4251 −4352 −4150

BIC linear −4401 −4243 −4288 −4380 −4420 −4236

BIC nonlinear −4254 −4131 −4177 −4230 −4330 −4129

Lower AICc and BIC values (in bold) indicate the better mathematical model
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linear wall model shows the opposite by predicting a slight
increase (3%) in Cp/CT and indicating a greater remodeling
of the larger vessels, these results were statistically insignif-
icant. Our analysis of compliance distribution reflects the
dominant role of vascular bed stiffening in the disease pro-
gression, suggesting Cp to be an important bio-marker of
disease detection and progression.

In summary, these findings suggest that the hypertensive
animals analyzed here exhibit remodeling of the entire vas-
culature, with distal vascular remodeling playing a dominant
role in elevating arterial blood pressure.

Wave reflection. Analysis of computedwaveforms showexis-
tence of backward compression waves during late systole
and, contrary to the observation about the pulmonary sys-
tem in dogs (Hollander et al. 2001) and humans (Qureshi
and Hill 2015), we did not detect a reflective decompressive
wave in mice. Moreover, the wave reflection coefficient IR
is significantly higher in hypertension (Figs. 7c, d, 9). This
observation can be explained by hypothesized proximal and
distal remodeling. As shown in Fig. 7a, c, e, g, the system has
some degree of compressive wave reflections under control
conditions. During hypertension, the stiffer proximal vas-
culature causes augmentation of the incident pressure wave
(compare the p+ waves in Fig. 7a, b). In addition, comparison
of the reflection coefficients IR (compare Fig. 7c, d) reveals
that reflection is increased in the hypertensive animals caused
by remodeling of the vascular beds. The net increase in IR
during hypertension exhibits the combined effect of proximal
and distal vascular remodeling, i.e. dominated by the distal
remodeling, on the main pulmonary arterial pressure.

The advantage in using IR is that it provides insight into
systemic effects rather than focusing on either small or large
vessels, and as such IR could be an important indicator
of disease progression. However, its usefulness cannot be
fully analyzed in the current model since it employs a fixed
inflow, simulating the cardiac compensation scenario during
which the cardiac output is maintained with hypertension
(Acosta et al. 2017). A model including a heart component
[e.g. Acosta et al. (2017); Formaggia et al. (2006); Mynard
and Smolich (2015)] and 1D vascular beds [e.g. Chen et al.
(2016); Olufsen et al. (2012); Qureshi et al. (2014)] would be
ideal to analyze the complex role of wave reflections in dis-
ease progression. Moreover, it is worth mentioning that the
reflection coefficient IR is an aggregated measure of reflec-
tions under control and hypertensive conditions. Implicitly,
it assumes that waves at the fundamental (i.e. the HR) and
nearby nonnegative frequencies are the major contributors to
the reflection (Segers et al. 2007), undermining the signifi-
cance of high frequency waves, as shown in earlier studies
by Westerhof et al. (1972) and Guan et al. (2016). Although,
a frequency-dependent reflection coefficient could be com-
puted using the impedance spectra in Fig. 8, we anticipate

difficulties, due to the calculation of characteristic impedance
in the frequency domain (Qureshi et al. 2018). Nevertheless,
changes in the reflection coefficient at various frequencies
due to pulmonary hypertension merits a separate detailed
investigation.

Impedance analysis. Overall, the characteristic features of
the impedance spectra resemble those reported by Nichols
et al. (2011) (Ch. 16). We note that the impedance moduli
are higher in hypertension, whereas the phase shows that it
starts out negative and then crosses zero at higher frequencies.
These results supplement observations fromVanderpool et al.
(2011), who studied the impedance spectra using in vitro
pulsatile hemodynamics in isolated lungs of the same type
of mice.

The results of low-frequency components aremore subtle.
One observation is that the low-frequency response is more
dynamic in the control animals, reflecting that large vessels
are more compliant. A characteristic feature that we were not
able to reproduce for the representative control mouse was a
pronounced third harmonic observed in control animals. To
our knowledge, this feature has not been reported elsewhere,
and could be a consequence of vessel tapering or wave prop-
agation from the vascular beds (which are not included in
this study), or it could be an artifact from cycle averaged
data. Unfortunately we do not have access to the raw data to
confirm or deny this characteristic.

In summary, pulmonary hypertension is characterized by
a more resistive and less compliant vasculature with aug-
mentedwave reflections, associatedwith high blood pressure
in the larger pulmonary arteries. This is in line with observa-
tions by Lankhaar et al. (2006) and Lungu et al. (2014) for
patients with andwithout pulmonary hypertension. Lankhaar
et al. (2006) used a 0D Windkessel model neglecting the
effects of wave propagation and arterial stiffness, whereas
Lungu et al. (2014) used a coupled 0D–1D model represent-
ing the pulmonary vasculature by a single vessel. In addition,
we can confirm the experimental observations that the pul-
monary compliance is uniformly distributed throughout the
vasculature and just not confined to the largest vessels (Krenz
and Dawson 2003; Presson et al. 1998). This makes pul-
monary hypertension an intrinsically different disease than
systemic hypertension. Overall, our analyses suggest that the
disease state and progression is dominated by vascular bed
remodeling playing a dominant role in altering the disease
markers (resistance, compliance and reflections), whereas
the large arterial remodeling is more of a consequence. It
contributes to disease progression but at a later stage. There-
fore, we suggest that not only should drug therapies focus
on affecting the microvasculature (arterioles, capillaries and
venules), but microvasculature should also be subjected to
detail analysis, using noninvasive procedures like imaging,
for a better understanding of disease progression.
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4.2 Inference of disease progression: linear versus
nonlinear wall mechanics

It is well known that arterial deformation acts nonlin-
early imposing increased stiffening with increased pressure
(Valdez-Jasso et al. 2011). Although, most studies confirm-
ing this behavior are done in systemic arteries (Eck et al.
2017; Langewouters et al. 1985; Valdez-Jasso et al. 2011),
pulmonary arteries are composed of the same type of tis-
sue and therefore should exhibit similar behavior under
dynamic loading (Lee et al. 2016). To understand the effects
of nonlinearities on hemodynamic predictions and parame-
ter estimation, we implemented a linear mechanistic and a
nonlinear empirical wall model. A qualitatively reasonable
outcome, i.e. increased stiffening with pressure, in the form
of nonlinear pressure–area curve is evident from Fig. 5. In
the absence of actual data for the area deformation, the area
predictions using the linear and nonlinear models cannot be
validated. As discussed in the results section, the apparent
difference in area predicted with the linear and nonlinear
wall models for the control animal can be a result of several
aforementioned factors which should be investigated further
in future studies.

The nonlinear wall model. Previous empirical nonlinear
stress strain models are formulated using sigmoidal func-
tions, relating pressure and area, saturating at both high
and low pressures (Langewouters et al. 1985; Valdez-Jasso
et al. 2011). This type of model is characterized by an
inflection point determined by a parameter representing the
half-saturation (or maximum compliance) pressure. Valdez-
Jasso et al. (2011) validated these models against dynamic
loading data, from ovine thoracic descending aorta (TDA)
and carotid artery (CA) under in vivo and ex vivo conditions,
showing that pressure-area dynamics lie on the upper (con-
cave down) part of the sigmoidal curves. While these models
were able to fit datawell, their estimates of the half-saturation
parameter p0 lie outside the known physiological range.

The advantage of the model used here is that it provides
similar estimates, but uses one less parameter, eliminating the
need to estimate p0 a parameter that likely is unidentifiable.
In this study, we set p0 = 0. While the wall model still pro-
vides the typical sigmoid shape as the original Langewouters
model, the point of inflection appears at zero pressure. More-
over, our model provides a basis for theoretical comparison
with the linear model at a reference state (A, p) = (A0, 0),
since under the small strain assumption, the nonlinear wall
model in Eq. (4) approximates to

p ≈ 2π p1
γ

(√
A

A0
− 1

)
+ O

(√
A

A0
− 1

)2

, (27)

which is the linear model with β = 2π p1/γ [see Eq. (10)].
This property justifies the interchangeable use of c0.lin and
c0.nlin in Eq. (8), used to estimate nominal values for p1 and
γ .

In summary, simulations with the linear wall model are
predominantly governed by the 0D boundary conditions, i.e.
vascular beds, whereas the nonlinear model modulates both
the 1D, i.e. large vessels, and 0D domain to predict hyper-
tensive hemodynamics. This suggests that the linear wall
model predicts greater remodeling of the vascular beds due
to HPH. However, the general inferences about control and
hypertensive hemodynamics, i.e. decreased total compliance,
increased stiffness, resistance and amplitudes of wave reflec-
tions, remain the same.

The results shown here indicate that measurements in
the MPA can be predicted with either wall model, but that
predictions in the small vessels differ.Withoutmore data con-
firming behavior in small vessels it is not possible to conclude
which model is better. Moreover, we showed that in hyper-
tensive animals bothmodels provide comparable predictions,
likely a result of increased vessel stiffness, but for the con-
trol animal elastic nonlinearities due to high compliance may
have significant effects on the model predictions.

4.3 Model selection

To our knowledge, no previous 1D wave propagation studies
have implemented statistical criterion for model selection.
In this study, we have carried out statistical model selection
to discriminate between the linear and the nonlinear wall
model given available data in the main pulmonary artery
using AICc and BIC scores. While we have made a para-
metric assumption about the measurement noise, we have
taken its correlation structure into consideration by fitting
a set of standard time-series models to the residuals. We
have focused on the control mice, for which the difference
between the linear and the nonlinear model was significant.
Our results suggest that the linear model is preferred. One
study by Valdez-Jasso (2010), examining wall properties
used the Akaike Information Criterion (AIC) for select-
ing the wall model. Their results showed that for control
animals (they studied sheep) the nonlinear wall model per-
forms better, whereas for stiffer vessels, the linear model
performs better. Their former conclusion is contradictory
to our model selection analysis of control mouse but the
later is consistent with our findings, which show no differ-
ence in the predictions using the linear and the nonlinear
wall models. However, Valdez-Jasso (2010) only examined
the stress–strain relation in single vessels in absence of
fluid dynamics. It should be noted that results presented in
this study were done using classical AICc and BIC selec-
tion criteria, which have an asymptotic justification. Better
approximations that are less reliant on asymptotics are the
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Watanabe–Akaike information criterion (WAIC) (Watan-
abe 2010) or the Watanabe–Bayesian information criterion
(WBIC) (Watanabe 2013). However, these more accurate
model selectionmethods, which we have explored in a recent
proof-of-concept study (Paun et al. 2018), are based on
Monte Carlo simulations and are thus computationally con-
siderably more expensive.

4.4 Limitations

In this study, we did not account for the variation in network
dimensions frommouse tomouse. This limitation stems from
the experimental conditions, aswe do not have hemodynamic
and micro-CT lung image from the same animals. The net-
work studiedwas set up to represent average vasculature from
the two groups. We segmented vessels that could be found in
all animals and used vessel length and diameters reflecting
the average from each group. In future studies, we plan to
examine the uncertainty associated with network variation
in more detail. We also ignored the uncertainty in the hemo-
dynamic data resulting from ensemble encoding of pressure
and flow waveforms over multiple cardiac cycles. Although
uncertainty quantification is beyond the scope of this study,
it is an important aspect that may have significant impact
on the parameter inference. Moreover, it is not clear from
image studies if the individual vessels taper, thus the effects
of vessel tapering were not considered in this study. Yet, it
is known that tapering introduces significant augmentation
of pressure along each vessel and throughout the network,
which makes it a sensitive model parameter, which could be
investigated. Other modeling limitations of this work include
the use of a fixed inflow, a 0D vascular bed model terminated
at capillary pressure of 0 mmHg. This assumption is unphys-
iological (Hellmes et al. 1949). However, its inclusion is
expected to have an insignificant effect on the flow dynamics
and parameter inference across healthy to diseased condi-
tions. It would be more interesting to study this phenomenon
within a more advanced framework for the outflow bound-
ary condition [e.g. see Olufsen et al. (2012) and Qureshi
et al. (2014)]. Moreover, in this study, we assumed a constant
blood viscosity throughout the network. This is reasonable
as the vessels included here are of the same order of mag-
nitude. However, the Fåhræus–Lindqvist effect may become
significant in studies examining larger networks including
bigger variation in vessel diameters due to rapid progression
to small caliber vessels. As for the comparison of linear and
nonlinear wall models, the interaction of the wall parame-
ters with the local hemodynamics should be investigated in
more detail to understand the apparent difference in area pre-
diction for the control animal. One aspect is the inclusion of
minor frictional losses, whichmay have an effect for the con-
trol animal, but be insignificant under the higher operating
pressure experienced by the hypertensive animal. Finally, the

model selection outcome is only valid for the current hemo-
dynamic data, which is available from one location in the
main pulmonary artery. The AICc and BIC scores may vary
significantly if the waveforms are available from multiple
locations within the network.

5 Conclusions

We found that the hypertensive mice display significant dis-
ease progression associated with remodeling within both
large and small vessels.Microvascular remodeling character-
ized by reduced compliance, increased resistance, augment-
ing wave reflections and stiffened large vessels is associated
with high blood pressure in the main pulmonary artery. We
also conclude that both linear and nonlinear models can be
used to predict the control and hypertensive hemodynam-
ics in the MPA with high accuracy, yet the prediction in the
smaller vessels and vascular beds differ. Without more data,
it is not possible to select which model better reflects wave
propagation along the entire network. These differenceswere
only displayed for control mice, with more compliant ves-
sels. For the hypertensive mice, both large and small vessels
are almost rigid and the two models predict the same behav-
ior. Although, the model selection criteria pick the linear
wall model for the control mouse, these results should not
be considered in the statistical context alone as the avail-
ability of more physiological data for optimization may alter
the present outcome. Finally, analysis of network hemody-
namics, wave intensities and impedance moduli indicates an
increased presence of wave reflections using the nonlinear
model. For this reason, parameter inference and characteriza-
tion of normal and remodeled vasculature should be regarded
as qualitative when using our nonlinear model.
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Appendix

A Vascular compliance

The volumetric compliance, defined as Cv = dV /dp
(ml/mmHg) for a cylindrical vessel with volume V , is com-
puted from the linear (Clin) and nonlinear (Cnlin) models. For
a longitudinally tethered vessel i in the network
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Cv = dV

dp
≡ L

dA

dp
, (28)

where L is the fixed length of the vessel and dA/dp is com-
puted from Eqs. (3) and (4), giving

Clin = C0.lin

(
p

β
+ 1

)
, and Cnlin = C0.nlin

(
p21

p2 + p21

)
,

(29)

where C0 denotes the reference compliance at p = 0, given
by

C0.lin = 2A0L

β
, and C0.nlin = γ A0L

π p1
. (30)

B Pulse wave velocity

The pulse wave velocity (PWV), c (cm/s), is computed from
the eigenvalues of the hyperbolic system of Eq. (2), from
λ1,2 = q/A ± c where

c =
√

A

ρ

dp

dA
=

√
AL

ρ Cv
. (31)

Setting Cv = Clin and Cnlin in Eq. (31) gives the squared
PWV computed for the linear and nonlinear wall models,
respectively

c2lin = c20.lin + p

2ρ
,

c2nlin = c20.nlin

(γ

π
tan−1(p/p1) + 1

) (
1 + (p/p1)

2
)

, (32)

where c20 is the square of the reference PWV at p = 0, given
by

c20.lin = β

2ρ
, and c20.nlin = π p1

γρ
. (33)

We use PWV in wave intensity analysis, described in
Sect. 2.7, for separating the incident and reflected waves.

C Nominal parameter values

As described in Sect. 2.5, nominal values for the nonlinear
model are set as p1 = β/π andγ = 2 for all cases.Moreover,
nominal values for RT, j are computed from RT reported in
the table above using methods described in Sect. 2.5 and
the network dimensions stated in Table 2. For all cases, the
resistance ratio a ≡ R1/RT = 0.2.

Table 4 Nominal values for wall parameters and compliance for indi-
vidual mice in each group

Control β0 (mmHg) RT0 (mmHg s/ml) τ0 (s)

1 37.5 108 0.15

2 44.5 56 0.06

3 37.7 47 0.06

4 40.7 70 0.10

5 15.6 69 0.13

6 26.0 87 0.14

7 31.7 101 0.13

Hypertensive β0 (mmHg) RT)
(mmHg s/ml) τ0 (s)

1 150.6 164 0.09

2 56.8 107 0.11

3 123.8 163 0.15

4 100.7 154 0.13

5 78.5 143 0.11

DOptimized parameter values

For all cases, we optimized β, γ, and p1 for the wall models,
and the global scaling parameters r1, r2, c1 for the Wind-
kessel model, such that

R1, j = r1R10, j , R2, j = r2R20, j , Cp, j = c1Cp0, j

where 0 indicate the nominal quantity. Upper and lower
bounds for the optimization intervals are given in Table 5.

Table 5 Bounds for optimization

Parameter β p1 γ (r1, r2, c1)

Lower bound β0 β0/2π 1 0.05

Upper bound 2.5β0 2β0 2π 2.5

E Convergence of optimization algorithm

To test the convergence of our optimization algorithm,
we carried out repeated optimizations in four- and five-
dimensional parameter spaces for the linear and nonlinear
wall models, respectively. This was done only for the rep-
resentative control mouse. Optimizations were initialized
from 20 initial values, drawn using the Sobol sequence to
uniformly cover the entire domain (i.e. predefined interval).
Regardless of the starting value, the algorithm converged to
the samevalues for a given parameter.Also, Fig. 13 shows the
convergence to a unique minimum of the objective function
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regardless of the starting point. For the sake of computational
efficiency, parallel optimization was conducted starting from
only four initial values for the remaining mice. Figures 11
and 12 show the optimization history (starting from 20 ini-
tial points) for the linear and nonlinear cases from the control
mouse.

Fig. 11 Time history of optimization algorithm for the case of linear
wall model. As a test case, 20 starting points were sampled from the
parameter interval (vertical axis). Each color represents an iteration
chain associated with a given starting point. All of them converged to
the same final value. On average, it took 28 iterations to converge to an
optimal value using the linear wall model

Fig. 12 Time history of optimization algorithm for the case of nonlinear
wall model. As a test case, 20 starting points were sampled from the
parameter interval (vertical axis). Each color represents an iteration
chain associated with a given starting point. All of them converged to
the same final value. On average, it took 52 iterations to converge to an
optimal value using the nonlinear wall model

Fig. 13 Time history of objective function’s values during the opti-
mization process starting from 20 starting points. Each color represents
an iteration chain associated with a given starting point. The plots are
shown on a linear-log scale (log(S)) both using the linear and the non-
linear wall models for the representative control mouse. Optimization
converges to aminimumof objective function irrespective of the starting
point

123



Hemodynamic assessment of pulmonary hypertension in mice: a model-based analysis of the…

References

Acosta S, Puelz C, Rivière B, Penny DJ, Brady KM, Rusin CR (2017)
Cardiovascular mechanics in the early stages of pulmonary hyper-
tension: a computational study. Biomech Model Mechanobiol
16:2093–2112

Alastruey J, Xiao N, Fok H, Schaeffter T, Figueroa CA (2016) On the
impact of modelling assumptions in multi-scale, subject-specific
models of aortic haemodynamics. J R Soc Interface. https://doi.
org/10.1098/rsif.2016.0073

Arnold A, Battista C, Bia D, German YZ, Armentano RL, Tran HT,
OlufsenMS (2017) Uncertainty quantification in a patient-specific
one-dimensional arterial network model: EnKF-based inflow esti-
mator. ASME J Verif Valid Uncert 2(1):14

Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman
DA (2008) An image-based modeling framework for patient-
specific computational hemodynamics. Med Biol Eng Comput
46:1097–1112. http://www.vmtk.org

Aslanidou L, Trachet B, Reymond P, Fraga-silva RA, Segers P, Ster-
giopulos N (2016) A 1D model of the arterial circulation in mice.
ALTEX 33:13–28

Blanco PJ, Watanabe SM, Dari EA, Passos MARF, Feijo RA (2014)
Blood flow distribution in an anatomically detailed arterial net-
work. Biomech Model Mechanobiol 13(6):1303–1330

Boileau E, Nithiarasu P, Blanco PJ, Mller LO, Fossan FE, Hellevik
LR, Donders WP, Huberts W, Willemet M, Alastruey J (2015)
A benchmark study of numerical schemes for one-dimensional
arterial blood flow modelling. Int J Numer Method Biomed Eng.
https://doi.org/10.1002/cnm.2732

Boggs P, Tolle J (2000) Sequential quadratic programming for large-
scale nonlinear optimization. J Comput Appl Math 124:123–137

Box GEP, Jenkins GM (1970) Time series analysis: forecasting and
control. Holden-Day, San Francisco

Burnham KP, Anderson DR (2002) Model selection and multimodel
inference: a practical information-theoretic approach, 2nd edn.
Springer, Berlin

Castelain V, Hervé P, Lecarpentier Y, Duroux P, Simonneau G, Chemla
D (2001) Pulmonary artery pulse pressure and wave reflection
in chronic pulmonary thromboembolism and primary pulmonary
hypertension. J Am Coll Cardiol 37(4):1085–1092

Chen WW, Gao HG, Luo XY, Hill NA (2016) Study of cardiovascular
function using a coupled left ventricle and systemic circulation
model. J Biomech 49(12):2445–2454

Chnafa C, Brina O, Pereira VM, Steinman DA (2018) Better than noth-
ing: a rational approach for minimizing the impact of outflow
strategy on cerebrovascular simulations. AJNR Am J Neuroradiol
39(2):337–343

Dujardin JP, StoneDN (1981) Characteristic impedance of the proximal
aorta determined in the time and frequency domain: a comparison.
Med Biol Eng Comput 19:565–568

Ellwein LM, Marks DS, Migrino RQ, Foley WD, Sherman S, LaDisa
JF (2016) Image-based quantification of 3Dmorphology for bifur-
cations in the left coronary artery: application to stent design.
Catheter Cardiovasc Interv 87:1244–1255

EckVG,Sturdy J,HellevikLR (2017)Effects of arterialwallmodels and
measurement uncertainties on cardiovascular model predictions. J
Biomech 50:188–194

Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algo-
rithm. J Opt Soc Am A 1:612–619

Formaggia L, Lamponi D, Veneziani A (2006) Numerical modeling of
1Darterial networks coupledwith a lumpedparameters description
of the heart. Comput Methods Biomech Biomed Engin 9(5):273–
88

Gan CT, Lankhaar JW, Westerhof N, Marcus JT, Becker A, Twisk JW,
Boonstra A, Postmus PE, Vonk-Noordegraaf A (2007) Noninva-
sively assessed pulmonary artery stiffness predicts mortality in
pulmonary arterial hypertension. Chest 132(6):1906–1912

Guan D, Liang F, Gremaud PA (2016) Comparison of the Windkessel
model and structured-tree model applied to prescribe outflow
boundary conditions for a one-dimensional arterial tree model.
J Biomech 49:1583–1592

Hellmes HK, Haynes FW, Dexter L (1949) Pulmonary capillary pres-
sure in man. J Appl Physiol 2(1):24–29

Humphrey JD (2008) Mechanisms of arterial remodeling in hyperten-
sion: coupled roles of wall shear and intramural stress. Hyperten-
sion 52(2):195–200

Hollander EH, Wang JJ, Dobson GM, Parker KH, Tyberg JV (2001)
Negative wave refections in pulmonary arteries. Am J Physiol
Heart Circ Physiol 281(2):895–902

Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries.
Proc R Soc A 466:1551–1597

Hunter KS, Lammers SR, Shandas S (2011) Pulmonary vascular stiff-
ness: measurement, modeling, and implications in normal and
hypertensive pulmonary circulations. Comput Physiol 1:1413–
1435

Ioannou CV, Stergiopulos N, Katsamouris AN, Startchik I, Kalangos
A, Licker MJ, Westerhof N, Morel DR (2003) Hemodynamics
induced after acute reduction of proximal thoracic aorta compli-
ance. Eur J Vasc Endovasc Surg 26:195–204

Karau K, Johnson R, Molthen R, Dhyani A, Haworth S, Hanger C,
Roerig D, Dawson C (2011) Microfocal X-ray CT imaging and
pulmonary arterial distensibility in excised rat lungs. Am J Physiol
Heart Circ Physiol 281:H1447–H1457

Kheyfets VO, O’Dell W, Smith T, Reilly JJ, Finol EA (2013) Consid-
erations for numerical modeling of the pulmonary circulation-a
review with a focus on pulmonary hypertension. J Biomed Eng
135:061011–2

KrenzGS,DawsonCA (2003) Flow and pressure distributions in vascu-
lar networks consisting of distensible vessels. Am J Physiol Heart
Circ 284(6):H2192–H2203

Langewouters GJ, Wesseling KH, Goedhard WJ (1985) The pressure
dependent dynamic elasticity of 35 thoracic and 16 abdominal
human aortas in vitro described by a five component model. J
Biomech 18:613–620

Lee P, Carlson BE, Chesler N, Olufsen MS, Qureshi MU, Smith
NP, Sochi T, Beard DA (2016) Heterogeneous mechanics of the
mouse pulmonary arterial network. Biomech Model Mechanobiol
15:1245–1261

Lankhaar JW, Westerhof N, Faes T, Marques K, Marcus J, Postmus
P, Vonk-Noordegraaf A (2006) Quantification of right ventricular
afterload in patients with and without pulmonary hypertension.
Am J Physiol Heart Circ Physiol 29(4):H1731–173

Li Y, Parker KH, Khir AW (2016) Using wave intensity analysis to
determine local reflection coefficient in flexible tubes. J Biomech
49:2709–2717

Lungu A, Wild JM, Capener D, Kiely DG, Swift AJ, Hose DR
(2014) MRI model-based non-invasive differential diagnosis in
pulmonary hypertension. J Biomech 47:2941–2947

Lumens J, Delhaas T, Kirn B, Arts T (2009) Three-wall segment
(TriSeg) model describing mechanics and hemodynamics of ven-
tricular interaction. Ann Biomed Eng 37(11):2234–2255

McDonald DA, Attinger EO (1965) The characteristics of arterial pulse
wave propagation in the dog. Inf Exchange Group No. 3, Sci Mem
7

123

https://doi.org/10.1098/rsif.2016.0073
https://doi.org/10.1098/rsif.2016.0073
http://www.vmtk.org
https://doi.org/10.1002/cnm.2732


M. U. Qureshi et al.

Meaney JFM, Beddy P (2012) Pulmonary MRA. In: Carr J, Carroll T
(eds) Magnetic resonance angiography. Springer, New York

Mynard J, Penny DJ, Smolich JJ (2008) Wave intensity amplification
and attenuation in non-linear flow: implications for the calculation
of local reflection coefficients. J Biomech 41:3314–3321

Mynard JP, Smolich JJ (2015) One-dimensional haemodynamicmodel-
ing andwave dynamics in the entire adult circulation. Ann Biomed
Eng 43:144–1460

Nichols WW, O’Rourke MF, Vlachopoulos C (2011) MCDonald’s
blood flow in arteries: theoretical, experimental and clinical prin-
ciples, 6th edn. Hodder Arnold, London

Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen
J (2000) Numerical simulation and experimental validation of
blood flow in arteries with structured-tree outflow conditions. Ann
Biomed Eng 28:1281–1299

Olufsen MS, Hill NA, Vaughan GD, Sainsbury C, Johnson M (2012)
Rarefaction andbloodpressure in systemic andpulmonary arteries.
J Fluid Mech 705:280–305

Paun LM, Qureshi MU, Colebank M, Hill NA, Olufsen MS, Haider
MA, Husmeier D (2018) MCMCmethods for inference in a math-
ematical model of pulmonary circulation. Stat Neerl 1–33:2018

Presson RG Jr, Audi SH, Hanger CC, Zenk GM, Sidner RA, Linehan
JH, Wagner WW Jr, Dawson CA (1998) Anatomic distribution of
pulmonary vascular compliance. J Appl Physiol 84(1):303–310

Pursell ER, Vélez-Rendón D, Valdez-Jasso D (2016) Biaxial properties
of the left and right pulmonary arteries in a monocrotaline rat ani-
mal model of pulmonary arterial hypertension. ASME J Biomech
Eng 138:111004

Qureshi MU, Vaughan GD, Sainsbury C, Johnson M, Peskin CS,
Olufsen MS, Hill NA (2014) Numerical simulation of blood flow
and pressure drop in the pulmonary arterial and venous circulation.
Biomech Model Mechanobiol 13(5):1137–1154

Qureshi MU, Hill NA (2015) A computational study of pressure wave
reflections in the pulmonary arteries. J Math Biol 71:1525–1549

Qureshi MU, Haider MA, Chesler NC, Olufsen MS (2017) Simulating
the effects of hypoxia on pulmonary haemodynamics inmice. Proc
CMBE 1:271–274

Qureshi MU, Colebank MJ, Schreier DA, Tabima DM, Haider MA,
Chesler NC, Olufsen MS (2018) Characteristic Impedance: fre-
quency or time domain approach? Physiol Meas 39(1):014004.
https://doi.org/10.1088/1361-6579/aa9d60

RasmussenCE,WilliamsCKI (2006)Acomputational studyof pressure
wave reflections in the pulmonary arteries. J Math Biol 71:1525–
1549

Reymond P, Merenda F, Perren F, Rufenacht D, Stergiopulos N (2009)
Validation of a one-dimensionalmodel of the systemic arterial tree.
Am J Physiol Heart Circ Physiol 297:H208–H222

Riches AC, Sharp JG, Thomas DB, Smith SV (1973) Blood volume
determination in mouse. J Physiol 228(2):279–284

Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S (2011) Inaccuracy of
Doppler echocardiographic estimates of pulmonary artery pres-
sures in patients with pulmonary hypertension: implications for
clinical practice. Chest 139:988–993

Safaei S, Bradley CP, Suresh V, Mithraratne K, Muller A, Ho H, Ladd
D, Hellevik L, Omholt SW, Chase JG, Mller LO, Watanabe SM,
Blanco PJ, de Bono B, Hunter PJ (2016) Roadmap for cardiovas-
cular circulation model. J Physiol 594(23):6909–6928

Schreier DA, Hacker T, Hunder KS, Eickoff J, Liu A, Song G, Chesler
NC (2014) Impact of hematocrit on right ventricular afterload dur-
ing the progression of hypoxic pulmonary hypertension. J Appl
Physiol 117(8):833–839

Schwarz G (1978) Estimating the dimension of a model. Ann Stat
6:461–464

Segers P,RietzschelER,DeBuyzereML,VermeerschSJ,DeBacquerD,
Van Bortel LM, De Backer G, Gillebert TC, Verdonck PR (2007)
Noninvasive (input) impedance, pulse wave velocity, and wave
reflection in healthy middle-aged men and women. Hypertension
49:1248–1255

Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C,
Ghofrani A, Sanchez MA, Kumar RK, Landzberg M, Machado
RF, Olschewski H, Robbins IM, Souza R (2013) Updated clini-
cal classification of pulmonary hypertension. J Am Coll Cardiol
62:D34–D41

Stergiopulos N, Meister JJ, Westerhof N (1995) Evaluation of meth-
ods for estimation of total arterial compliance. Am J Physiol
268:H1540–1548

Tabima DM, Roldan-Alzate A, Wang Z, Hacker TA, Molthen RC,
Chesler NC (2012) Persistent vascular collagen accumulation
alters hemodynamic recovery from chronic hypoxia. J Biomech
45:799–804

Tang B, Pickard S, Chan F, Tsao P, Taylor C, Feinstein J (2012) Wall
shear stress is decreased in the pulmonary arteries of patients with
pulmonary arterial hypertension: an image-based, computational
fluid dynamics study. Pulm Circ 2(4):470–476

Tran JS, Schiavazzi DE, Ramachandra AB, Kahnb AM, Marsden AL
(2017) Automated tuning for parameter identification and uncer-
tainty quantification in multi-scale coronary simulations. Comput
Fluids 142:128–138

Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S (2007)
Pathology of pulmonary hypertension. Clin Chest Med 28(1):23–
27

Tawhai MH, Clark AR, Burrowes KS (2011) Computational models of
the pulmonary circulation: insights and themove towards clinically
directed studies. Pulm Circ 1(2):224–238

Vanderpool RR, Kim AR, Chesler NC (2011) Effects of acute Rho
kinase inhibition on chronic hypoxia-induced changes in proximal
and distal pulmonary arterial structure and function. JAppl Physiol
110:188–198

Valdez-Jasso D, Bia D, Zcalo Y, Armentano RL, Haider MA, Olufsen
MS (2011) Linear and nonlinear viscoelastic modeling of aorta
and carotid pressure-area dynamics under in vivo and ex vivo con-
ditions. Ann Biomed Eng 39:1438–1456

Valdez-Jasso D (2010) Modeling and identification of vascular biome-
chanical properties in large arteries. PhD ihesis, North Carolina
State University, Raleigh, NC

van de Vosse FN, Stergiopulos N (2011) Pulse wave propagation in the
arterial tree. Annu Rev Fluid Mech 43:467–499

Watanabe S (2010) Asymptotic equivalence of Bayes cross validation
and widely applicable information criterion in singular learning
theory. J Machi Learn Res 11:3571–3594

Watanabe S (2013) A widely applicable bayesian information criterion.
J Mach Learn Res 14:867–897

Wang Z, Chesler NC (2011) Pulmonary vascular wall stiffness: an
important contributor to the increased right ventricular afterload
with pulmonary hypertension. Pulm Circ 1(2):212–223

Westerhof N, Sipkema P, Van Den Bos GC, Elzinga G (1972) Forward
and backward waves in the arterial system. Cardvasc Res 6:648–
656

Westerhof N, Lankhaar J, Westerhof B (2009) The arterial windkessel.
Med Biol Eng Comput 47:131–141

Williams ND, Wind-Willassen O, Wright AA, Program REU, Mehlsen
J, Ottesen JT, Olufsen MS (2014) Patient specific modeling of
head-up tilt. Math Med Biol 31:365–392

WillemetM,Alastruey J (2015)Arterial pressure andflowwave analysis
using time-domain 1-D hemodynamics. AnnBiomed Eng 43:190–
206

123

https://doi.org/10.1088/1361-6579/aa9d60


Hemodynamic assessment of pulmonary hypertension in mice: a model-based analysis of the…

Windberger U, Bartholovitsch A, Plasenzotti R, Korak KJ, Heinze G
(2003) Whole blood viscosity, plasma viscosity and erythrocyte
aggregation in ninemammalian species: reference values and com-
parison of data. Exp Physiol 88:431–440

Yang W, Feinstein J, Vignon-Clementel I (2016) Adaptive outflow
boundary conditions improve post-operative predictions after
repair of peripheral pulmonary artery stenosis. Biomech Model
Mechanobiol 15(5):1345–1353

Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig
G (2006) User-guided 3D active contour segmentation of anatom-
ical structures: significantly improved efficiency and reliability.
Neuroimage 31:1116–1128. www.itksnap.org

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

www.itksnap.org

	Hemodynamic assessment of pulmonary hypertension in mice: a model-based analysis of the disease mechanism
	Abstract
	1 Introduction
	1.1 Experimental studies
	1.2 Modeling studies

	2 Methods
	2.1 Experimental methods
	2.1.1 Hemodynamic data
	2.1.2 Imaging data

	2.2 Fluid dynamics model
	2.3 Wall model
	2.4 Boundary conditions
	2.5 Parameter values
	2.6 Numerical simulations
	2.7 Model analysis
	2.8 Statistical analysis

	3 Results
	3.1 Hemodynamics
	3.2 Parameter estimates
	3.3 Wave intensity analysis
	3.4 Impedance analysis
	3.5 Statistical analysis 

	4 Discussion
	4.1 Inference of disease progression: CTL versus HPH
	4.2 Inference of disease progression: linear versus nonlinear wall mechanics
	4.3 Model selection
	4.4 Limitations

	5 Conclusions
	Funding
	Appendix
	A Vascular compliance
	B Pulse wave velocity
	C Nominal parameter values
	D Optimized parameter values
	E Convergence of optimization algorithm
	References




