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Right Ventricular-Pulmonary Vascular
Interactions

Accurate and comprehensive evaluation of right ventricular (RV)-pulmonary
vascular (PV) interactions is critical to the assessment of cardiopulmonary
function, dysfunction, and failure. Here, we review methods of quantifying
RV-PV interactions and experimental results from clinical trials as well as large-
and small-animal models based on pressure-volume analysis. We conclude by

outlining critical gaps in knowledge that should drive future studies.

The function of the right ventricular-pulmonary
vascular unit depends on the function of its com-
ponents as well as the dynamics of their interac-
tions. A framework for understanding these
interactions is the relationship between supply and
demand. In a healthy state, the supply of blood
pressure and blood flow is adequate to meet de-
mand; increases in demand, such as generated by
exercise, changes in altitude, or increased blood
volume in pregnancy, are met by increases in sup-
ply. However, in disease states such as pulmonary
arterial hypertension (PAH), which progresses
from first symptoms to death in 5 yr for 55% of
patients (82), increases in demand cannot be met
by increases in supply, with right ventricular failure
the consequence. Using this framework, here we
review investigations of right ventricular-pulmo-
nary vascular interactions, results from their use in
preclinical and clinical studies, and conclude with
suggestions for future work.

Supply and Demand: A Framework
to Assess Right Ventricular-
Pulmonary Vascular Interactions

Cardiopulmonary status is determined by the state
of the right ventricle (RV), the pulmonary vascula-
ture (PV), and their interactions, assuming ade-
quate respiratory function. The RV-PV unit can be
conceptualized as a series of pumps, which supply
mechanical energy, and a network of large and
small pipes, which simultaneously demand and
dissipate this energy. Hemodynamically, RV energy
supply is created by RV myocyte contraction,
which depends on the preload (stretch), afterload
(stress) imposed, and bioenergetics status (e.g., 0x-
ygen bioavailability, mitochondrial function, ATP
levels, etc.). Moreover, RV pump function depends
on left ventricular (LV) pump function; it has been
estimated that 20-40% of RV energy supply (sys-
tolic pressure and volume outflow) is due to LV
ejection in a healthy state (19, 30, 69). Hemody-
namic energy demand in this framework is the
cardiac output, largely determined by the LV and
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systemic vasculature, and transformed by the pul-
monary vasculature. In particular, pulmonary vas-
cular resistance and stiffness (inverse compliance)
create a mean and pulse pressure demand from
the cardiac output (flow demand); here, we denote
the combination as PV demand (FIGURE 1).

Given this framework, methods to simultane-
ously assess RV supply and PV demand are essen-
tial to evaluation of RV-PV interactions. One such
approach was proposed by Sagawa et al. for left
ventricular-systemic vascular interactions based
on pressure-volume (P-V) loops (FIGURE 2) (68). In
P-V analysis, the ventricle is conceptualized as a
sac that has a time-varying stiffness or elastance
due to myocardial contraction and relaxation.
Beginning at the start of isovolumic contraction,
the elastance increases from an initial minimum
to a peak value (E,,,,), and then returns to the
minimum value again. The instantaneous elas-
tance E(#) is defined mathematically as E() =
P(H/[V(f) — V,], where P(1) is the instantaneous
pressure, V(?) is the instantaneous volume, and
V, is the volume intercept of the line connecting
the P-V points at the same phase of the cardiac
cycle at two (or more) different preload condi-
tions (17, 48, 67, 68, 95) (FIGURE 2). Although V,
can change with time (68), it is often assumed
constant and equal to the value obtained at end
systole (FIGURE 2).

Because it can be difficult to identify E_,, from
P-V curves, it is typically assumed equal to the
end-systolic elastance (E.,) determined from a lin-
ear approximation to the end-systolic P-V relation-
ship (ESPVR) (FIGURE 2). Although this approach
is recommended by most experts (90), some accu-
racy is lost when ESPVR is assumed to be linear,
since it is inherently curvilinear and typically con-
vex to the pressure axis (11, 34). E,, is a commonly
used load-independent measure of contractility
that can be derived from P-V loops, but it is af-
fected by changes in heart rate (52), reduction in
coronary perfusion pressure (74), and ionotropic
state (48).
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When E_ is used to define hemodynamic energy
supply, a complementary elastance of the vascula-
ture is used to compute hemodynamic energy de-
mand: the effective arterial elastance (E,) is the
slope of the line that connects the ventricular end-
systolic point to the ventricular end-diastolic vol-
ume projected on the volume axis (FIGURE 2). E, is
a composite measure that is dependent on vascu-
lar resistance and compliance. It has the advantage
(and disadvantages) of being a single metric of
ventricular afterload. One disadvantage is that, like
E,,, it is dependent on heart rate (73, 75).

The ratio of ventricular to vascular elastance
(Eos/E,), vields insight into the balance between
hemodynamic energy supply and demand in the
ventricular-vascular unit. It also provides a quan-
titative assessment of the adequacy of ventricular-
vascular coupling (VVC). Experimental and
modeling studies have demonstrated that, in the
healthy beating heart, E.,/E, = 1.5-2.0. Despite
these healthy values of >1, E_/E, is often referred
to as ventricular-vascular coupling efficiency. In a
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mechanical system, efficiency is defined as the
ratio of output power to input power; transmis-
sion of power is maximized when the output
impedance of the power-producing part and the
input impedance of the power-receiving part are
equal such that the efficiency of the system is
equal to one. When energy dissipation occurs,
efficiency is <1. Calculating an equivalent effi-
ciency of the ventricular-vascular unit would re-
quire measurement of input power or energy
(e.g., oxygen consumption), and output power or
energy (e.g., stroke work), which is challenging
and thus infrequently done (10, 41).

The application of P-V loop analysis to the
RV-PV unit was validated by Maughan and collab-
orators (48) with studies in isolated canine hearts.
Clinical application of RV P-V loop analysis, often
with significant approximations (as described
below), has shown that lower values of E.,/E,
predict mortality in PAH (3, 8, 32, 44, 59). Higher
values of E.,/E, have been interpreted to mean
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FIGURE 1. Schematic of the relationship between supply and demand of right ventricular-pulmonary vascular unit

Schematic of pressure and flow supply vs. demand showing the main contributors of right ventricular-pulmonary interactions including supply-side
determinants: right ventricular dimensions and geometry, myocyte mechanics, and right ventricular preload; and demand-side determinants: pulmo-
nary vascular compliance, which is dependent on transmission and modulation of pressure waves through large and small pulmonary arteries and pul-
monary vascular resistance, which is dependent mostly on small arterial caliber and tone. Heart rate and left ventricular function are not shown.
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RV Pressure

that the RV supply is properly coupled to the
demand of the pulmonary circulation (55) or that
the RV-PV unit is operating with minimal energy
cost (23, 66). However, some limitations in the
application of this approach to RV-PV interac-
tions exist. First, although E at end systole (E,,) is
a good estimate of E, ., in the LV, this is less true
in the RV because of non-coincidence of end-
ejection and end-systole (48). Second, RV P-V
loops are frequently triangular in shape instead
of square, which makes identification of the end-
systolic point more difficult than in the LV (48,
62). Moreover, with increasing pulmonary vascu-
lar resistance due to PAH, the shape of RV P-V
loops change: they become more square-shaped
in mild PAH and then more trapezoidal in severe
PAH (7, 53), which affects the calculation of E,, .
Finally, V, varies more throughout the cardiac
cycle in the RV than in the LV, such that the errors
induced by assuming a constant V,, are larger (48).

Approaches to examine RV-PV interactions other
than P-V loop analysis do exist. One is pump func-
tion curves, which are traditionally built from mea-
surements of the mean RV pressure that serves as
a surrogate for PV demand, and stroke volume (SV)
that serves as a surrogate for RV supply (86). There
have been some limited pump function studies
assessing RV function in PAH (58). However, the
limitations of this approach, which include its sen-
sitivity to changes in preload and neglect of pulsa-
tile work components, have prevented it from
being widely adopted in either clinical or preclin-
ical studies.

A second alternative approach bases its estima-
tion of PV demand on pulse-wave velocity and
wave transit time in the heart, which are calculated
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FIGURE 2. Elastances derived from pressure-volume loops
Pressure-volume loops showing the calculation of effective arterial elas-
tance and end-systolic elastance by decreasing preload such as by inferior
vena cava occlusion.
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through pulmonary vascular impedance (PVZ).
Unlike pulmonary vascular resistance (PVR), which
measures the opposition to steady flow, primarily
determined by small-vessel resistance and a criti-
cal diagnostic criterion for PAH, PVZ measures the
total opposition to flow through analysis of instan-
taneous arterial pressure and flow waves. PVZ pro-
vides the most comprehensive description of RV
afterload, but its measurement is technically de-
manding (requiring simultaneously measured
pressure and flow), and its computation is not
standardized (to either frequency or time-domain
analysis) (33, 80). Furthermore, PVZ does not en-
able straightforward assessment of PV demand
coupling to RV supply.

Application to Clinical Studies

Two main factors limit the assessment of RV-PV
interactions via P-V loop analysis in the clinical
setting. First, simultaneous pressure and volume
measurements in the RV are difficult to obtain.
Recently, an FDA P-V catheter approved for human
use has been employed in clinical studies on the
left ventricle (21, 60), but the non-cylindrical shape
of the RV limits accuracy, especially at small vol-
umes. Second, although it is possible to vary pre-
load through inferior vena cava occlusions in
animals, such maneuvers are not feasible in hu-
mans due to the increased risks of additional pro-
cedures and hemodynamic compromise. To
overcome this limitation, both Hsu et al. and Ted-
ford et al. had subjects perform Valsalva maneu-
vers to increase intrathoracic pressure during
invasive right heart catheterization (RHC) with a
P-V catheter, which successfully decreased preload
in patients with idiopathic PAH and systemic scle-
rosis-associated PAH (32, 81). Nevertheless, the
majority of clinical studies use approximations of
P-V analysis with the methods summarized below.

The Single Beat Method

When P-V loops cannot be obtained instanta-
neously and simultaneously over multiple heart-
beats with varying preload, the “single beat
method,” introduced by Sunagawa et al. for char-
acterization of the left ventricle and left ventricu-
lar-systemic vascular coupling (56, 76, 79) and first
applied to the RV-PV system by Brimioulle et al. (9)
is often used. This method is based on a fitting of
the early and late isovolumic contraction and re-
laxation ranges of the RV pressure waveform with a
sine function (FIGURE 3A). The method assumes
that ESPVR is the same in ejecting and non-eject-
ing beats and that the peak value of the sine func-
tion is the maximum pressure (P,,,,,) that can be
reached by a theoretical non-ejecting heartbeat.
A straight line drawn from P,  to the RV
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end-systolic pressure of the ejecting beat vs. the
stroke volume permits a reasonably accurate esti-
mation of E..,, (Which is within 15% of E_; see Ref.
9) and is calculated as:
Ees;sb = PmaX PES (1)
SV

Although this method obviates the need to
vary preload, simultaneously measuring pressure
and volume remains an obstacle to widespread
clinical application. As noted above, an
FDA-approved conductance catheter enables
collection of simultaneous P-V data, but this sys-
tem is expensive and requires technical exper-
tise. Two- and three-dimensional echocardio-
graphic measurements of RV volume collected
simultaneously with invasively measured PA
pressure are possible (18, 31), but, given the non-
cylindrical shape of the RV, MRI-based volume
measurements are preferred. MRI-derived RV vol-
ume measurements have been synchronized of-
fline with RHC-derived RV pressure measurements
(4, 44, 83), but recent advances in MRI catheteriza-
tion (i.e., simultaneous MRI and RHC) allow acqui-
sition of synchronous ventricular volume and
pressure (65). To date, MRI catheterization has
been used to create P-V loops in hypoplastic left
heart syndrome (93); the future clinical impact of
this approach may be considerable.

Since E, is determined by a straight line from the
end-systolic pressure point to the end-diastolic
volume projected onto the volume axis, there is no
loss of accuracy when it is calculated from a single
beat as:

Pes

E =—
a8V

2)

In large animals, good agreement was found be-
tween the RV-PV coupling (VVC) estimated via the
single-beat method VVC, = E_,.,,/E, and that cal-
culated from multiple beats with preload reduction
(VWWC = E.,/E,) (23, 44). Subsequently, the single-
beat method has been used extensively in large
animal (36-39, 59, 89) and in clinical studies (44,
58, 83, 88).

The Pressure Method

In the absence of RV volume measurements, the
“pressure method” has been described to capture
VVC based on parameters easy to obtain during a
standard right heart catheterization. In this
method, P,,,. is estimated from the sinusoidal
extrapolation of the early systolic and diastolic por-
tions of the RV pressure curve, the same as the
method described above for the single-beat
method, with P, approximated by mPAP (13). This
approximation requires two key assumptions: first

that peak RV pressure is equal to P, and second
that mPAP is an acceptable surrogate for peak RV
pressure (8, 12, 13, 70). With this method, as de-
tailed in (8, 70, 84):

Pmax

W = par ! 9
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FIGURE 3. Methods for approximating ventricular vascular cou-
pling in clinical studies

Comparison of the single-beat method (A) and the volume method (B) for
the approximation of ventricular vascular coupling (VVC).
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Table 1. Studies evaluating RV-PV coupling in large animal models of pulmonary hypertension

Model Animal EN EN wWC References
Acute
Pulmonary arterial banding Dog, pig, goat 1 ! l 35, 38, 39
Acute thromboembolism Dog, goat 1 Initial Final |’ 23, 36, 37, 47
/l\ JE—
Acute hypoxia Dog, 1 1 — 20, 40, 63, 64
Endotoxic shock Pigs 1 Initial Final ! 45, 46
7 !
Acute RV ischemia Pigs 1 ! |’ 50
Chronic
Over-pacing induced left heart failure Dogs 1 — l 59
Left PA ligation + sequential embolization Pig 1 1 ! 27,28

In general, the pressure method leads to higher
values of coupling that are correlated with those
from the single beat method (84).

The Volume Method

Alternatively, if RV volumes are available and RV
pressures are not, the “volume method” has been
described (70, 83, 84) in which:

SV

v~ Esv (4

where ESV is end-systolic volume. Note that some
authors use E,/E., to define coupling such that
VVC, = ESV/SV (70, 83), but we strongly recom-
mend E_(/E, be used for consistency. Importantly,
this approach assumes that 1) RV end-systolic
pressure (ESP) is equal to mPAP, 2) the ESP-ESV
relationship is linear, and 3) V, equals zero
(FIGURE 3B). As a consequence of these assump-
tions, this method tends to underestimate VVC.
Moreover, as recently recognized by Vanderpool et
al. (85), this metric is mathematically linked to the
RV ejection fraction (EF):

SV EF

VWC, = — =
V" ESV 1-EF

(5

and thus should not be more predictive of mortal-
ity than EF alone.

Acute Increases in PV Demand

An acute increase in RV supply in response to an
acute increase in PV demand is a key component
of adaptation to physiological stress, such as exer-
cise, or pathological stress, such as pulmonary
embolism. Preservation of RV-PV coupling in
response to acute stressors has been investigated
using acute hypoxia (20, 40, 63, 64) and acute
thromboembolism (23, 36, 37, 47) (Table 1). In
addition, the response of the RV to acute ischemia
(50) and acute lung injury due to endotoxic shock
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have also been evaluated (45, 46). These studies
provide key clinically relevant insights into RV
function and adaptation in the setting of multiple
models of increased demand, from mild to severe,
that are summarized in Table 1.

Acute models of PAH also provide a time-effi-
cient way to investigate the effect of drug therapies
on RV-PV coupling (35, 37-40, 47, 50, 63, 64). As
detailed in Table 2, various drugs have been inves-
tigated in large-animal models of acute pulmonary
hypertension, including those that target the pul-
monary vasculature (35, 63, 64), those that target
the RV (37-39, 47, 50), and those that affect both
(40). However, these studies typically assess only
acute effects (10—120 min), thereby necessitating
follow-up studies to determine whether any bene-
ficial effects are sustained.

Insights Gained from Clinical
Studies

Enabled by the novel technologies and the approx-
imation methods described above, evaluation of
VVC has provided important insights into the un-
derstanding of cardiopulmonary function, espe-
cially in PAH, in humans.

Kuehne et al. found that VVCg, from non-simul-
taneous MRI and RHC was reduced in PAH subjects
compared with controls, despite increased RV supply
(44). McCabe found the same result in patients with
chronic thromboembolic pulmonary hypertension
compared with controls using conductance catheter-
based VVC,, measurements (49). In a retrospective
analysis of 134 patients who underwent non-simul-
taneous RHC and MRI as work-up for PAH, Sanz et
al. found that PAH subjects had significant elevations
in E, and E, , compared with non-disease controls,
as well as significant uncoupling as determined by
decreased VVC,, (70).

Brewis et al. demonstrated a significant correla-
tion between higher VVC, and improved survival in
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patients with PAH. Furthermore, patients in this
study who had stable or improved VVC, in re-
sponse to therapy demonstrated improved survival
(8). However, as noted above, given the mathemat-
ical links between VVC, and EF, it is unclear how
VVC, adds value to prognoses.

Multiple studies have evaluated the correlation
between VVCgy, VVC,, and VVC,. These invasive
and non-invasive estimates of VVC have been
found to be highly correlative with R values rang-
ing from 0.79 to 0.93 (70, 83, 84). Two studies with
a total of over 150 patients between them demon-
strated that VVC, correlates with survival, whereas
VVC,, does not (8, 84). Additional studies are re-
quired to address the question of whether VVC,
quantified without additional simplifications, is a
better predictor of mortality than VVCy,, VVC,,, or
VVC, (or RV EF). If time-resolution limitations of
MRI can be addressed, MRI catheterization with
preload reduction by Valsalva could be used to
conduct these studies. Otherwise, comprehensive
hemodynamic studies in large-animal models as
described below will be required.

Exercise as a Tool to Unmask Pathological
Changes

Evaluation of the RV-PV response to exercise is
increasingly a clinically applicable methodology
that may unmask pathological changes not evi-
dent at rest. In healthy subjects, exercise in-
creases heart rate and stroke volume (42, 54, 71),
and the inability to do so is indicative of poor
prognosis in PAH (5, 26, 72). From the perspec-
tive of RV-PV interactions, increased cardiac
output, transformed by pulmonary vascular re-
sistance and compliance, increases PV demand.
Exercise can also decrease PVR (42, 43, 54, 71)
and compliance (43, 71). Spruijt et al. studied
both the RV and PV response to exercise, as well
as their interactions. Control subjects demon-
strated increased E, and increased E_,, with
preservation of VVCg,, which was in contrast to
PAH subjects who demonstrated a significant de-
crease in VVCy, (72). Bellofiore et al. demon-
strated that PAH subjects with a lower VVC, at
rest achieved a lower maximum exercise level
and had limited reduction in pulmonary artery
compliance during exercise (4). However, both of
these studies were limited by low numbers of
control subjects. In addition, the effects of in-
creased heart rate on E_, and E_, were not taken
into account. Accurate characterization of the
normal response of the RV to exercise as well as
interactions between the RV and PV during ex-
ercise, accounting for heart rate, are critical to
evaluating the changes that occur in disease.

Physiological Insights from Large-
Animal Studies

With appropriately chosen species, large-animal

models have high fidelity to human cardiopulmo-

nary physiology and pathology. Wauthy et al. eval-

uated the response to acute PAH caused by
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FIGURE 4. Evolution of right ventricular response to PAH
Changes in idealized pressure-volume loops with increases in afterload and
RV dilatation (A) and representative pressure-volume loops (B) from mice
with PAH and RV dilatation via chronic hypoxia (Hy) and hypoxia+sugen
(HySu) acute decreases in preload to obtain E...
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Table 2. Studies evaluating the effect of pharmacological interventions on RV-PV coupling in large animal models of
pulmonary hypertension

Drug

Model

Animal E_, E., VVC References

Vasoactive drugs

Prostacyclins Acute PA constriction, acute hypoxia Dog, pig | —/| 1/— 20, 35, 63, 64
Inhaled nitric oxide  Over-pacing induced left heart failure Dog - — — 59
Nitroprusside Over-pacing induced left heart failure Dog - — — 59
lonotropic drugs
Milrinone Over-pacing induced left heart failure Dog — T 59
Norepinephrine Acute PA constriction Dog Tt 39
Dobutamine Acute PA constriction Dog T 1 T 38,39
Vasopressin Acute thromboembolism Dog (I 47
Phenylephrine Acute thromboembolism Dogs (e 47
Levosimedan Acute PA constriction, ischemic RV failure, acute thromboembolism Dog, pig | 1 1 37,38,50
Inhaled anesthetics
Isoflurane, desflurane Acute hypoxia and hyperoxia Dog T — | 40

pulmonary arterial banding (PAB), hypoxia, or
thromboembolization in dogs, goats, and minipigs
(89). Significant interspecies differences were
found, with mPAP, E,, and E_, at baseline increas-
ing from dogs to goats to minipigs. Under baseline
conditions, VVC was high in all species, and all
species demonstrated similar responses to acute
hypoxia, with progressive increases in both E, and
E.., and no significant change in their ratio. Con-
sistent with these findings, both dog and goats
were demonstrated to have similar responses to
both proximal PAB and acute thromboembolism
(89), which suggests that both baseline RV-PV in-
teractions and the adaptive response of the RV-PV
unit to acute stress is conserved across species.
Several large-animal models of chronic PAH
have been described, including monocrotaline
(MCT)-induced PAH in dogs (14, 15, 29, 51), pro-
gressive pulmonary artery banding in pigs (2), pul-
monary venous banding to induce postcapillary
pulmonary hypertension in pigs (61), and a com-
bination of chronic thromboembolism and proxi-
mal PA coiling in pigs (2). These studies
demonstrate the feasibility of creating large-animal
models of chronic pulmonary hypertension with
the expected RV hypertrophy and decreased RV EF.
However, RV-PV interactions were not quantified
in these studies. Guihaire created a swine model of
chronic PAH that combined left PA ligation and
sequential embolization of the right lower pulmo-
nary lobe (Table 1) (27, 28, 57). Chronic RV pres-
sure overload was demonstrated by significantly
increased mPAP after 6 wk, which was accompa-
nied by increased E, and E,,. Despite the increase
in E,,, it was not sufficient to compensate for in-
creased E,, and consequently VVC decreased until
perfusion was surgically restored to the left lung
(27, 28). This chronic large-animal model provides
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useful insights into the adaptation of cardiopulmo-
nary function to chronic PAH. However, it is re-
source intensive, requiring multiple surgeries as
well as serial fluoroscopic-guided right heart cath-
eterization for directed embolization.

Continued development of large-animal chronic
PAH models with high fidelity to human disease
and evaluation of these models with P-V loop anal-
ysis should provide insight into disease pathophys-
iology as well as for a platform for testing the safety
and efficacy of novel therapies.

Mechanistic Insights from Small-
Animal Studies

Although the hemodynamic changes that result
from acute and chronic PAH in small animals may
be less similar to the clinical situation than those of
large animals, small-animal, especially mouse,
studies enable use of sophisticated genetic tools
that allow for evaluation of the molecular drivers of
RV-PV uncoupling. Critical to the study of PAH in
small-animal models is the ability to measure RV
supply and PV demand.

Our group was the first to describe the use of P-V
loop analysis to evaluate RV-PV function in rodents
in 2010, adopting technologies and methodology
previously used to evaluate left ventricular func-
tion. This study demonstrated the feasibility and
utility of using an admittance catheter to measure
P-V loops in anesthetized, open-chested mice be-
fore and during vena cava occlusion to alter pre-
load, permitting the determination of E.,, E,, and
VVC as well as measurement of a multitude of
metrics of both diastolic and systolic RV function.
This initial study was done in a mouse model of
chronic hypoxic pulmonary hypertension, which
has the limitation that the PAH is reversible and
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often mild (78) (FIGURE 4). Subsequently, we and
others have used P-V loop analysis to characterize
development of RV dysfunction in other rodent
models of PAH (3, 16, 24, 25, 66, 87, 94).

A subsequent study from our group by Wang et
al. examined the development of RV dysfunction
and RV-PV uncoupling over time in a progressive
model of hypoxia and SU5416 treatment (HySu
exposure), a model of severe PAH that recapitu-
lates the plexiform pulmonary vascular lesions
seen in human PAH in rodents (1) (FIGURE 4);
however, SU5416 may directly impact RV func-
tion since decreased angiogenesis and capillary
density are associated with RV failure (6, 77).
Both RV systolic pressure and E, increased
throughout the 28-day HySu exposure, whereas
E. only increased with HySu exposure up to 21
days, with no further increases seen between 21
and 28 days (with cardiac output increasing up to
14 days and then declining). Corresponding to
these findings, VVC was initially preserved and
even increased at 14 days of HySu exposure and
then decreased consistent with uncoupling by 28
days. Through the rigorous investigation of RV
function at multiple time points, this study dem-
onstrates initial adaptation of the RV and subse-
quent maladaptation and failure after prolonged
exposure to increased afterload (87).

Alaa et al. utilized P-V loop analysis to differen-
tiate between PAH with preserved cardiac index
(CI) and PAH with reduced CI in a MCT-induced
model of PAH in rats (3). MCT has the advantages
of causing severe PAH that recapitulates some of
the pathological hallmarks of the disease in hu-
mans, such as distal smooth muscle hypertrophy,
obliteration of small pulmonary arteriole lumens,
and plexiform lesions (22, 91): however, it has the
disadvantage of causing cardiac inflammation that
may impair RV supply independent of increased
RV demand (92). As expected, MCT-induced PAH
led to increased RV systolic pressure, increased E,,
and increased E_, with decreased VVC. Interest-
ingly, compared with PAH with preserved CI, PAH
with reduced CI was associated with significantly
higher E, and E.,, but no significant difference in
VVC. Moreover, although all MCT-treated animals
demonstrated RV dilation, there was no difference
in RV dilation between the preserved and reduced
CI groups. This study, in which the inability to
preserve CI was ultimately related to diastolic dys-
function (3), demonstrates that even the relatively
comprehensive assessment of the cardiopulmo-
nary unit afforded by P-V analysis can miss critical
pathophysiological changes if only the standard
metrics E,, E,,, and VVC are evaluated.

As with large-animal studies, P-V analysis has
been used to evaluate therapeutic interventions in
rodent studies. Rungatscher et al. demonstrated

S-nitroso human serum albumin (S-NO-HSA)
treatment resulted in improvement in E,, E., and
VVC in a rat model of RV volume overload (66).
Zeineh et al. showed a possible positive inotropic
effect of iloprost, a prostacyclin, which resulted in
increased VVC in a MCT rat model of PAH (94). De
Man et al. demonstrated that B-blockade with
bisoprolol delayed progression to RV failure and
improved VVC in a MCT rat model of PAH (16).
Despite promising results in small-animal studies,
few of these findings are translatable into human
therapies due the current limitations in large-ani-
mal studies for PAH and the fact that often thera-
pies effective for small animals are not effective in
large-animal models or human trials.

With the establishment of P-V loop analysis as
a robust tool evaluating small-animal models of
PAH, the impact of genetic modifications on
RV-PV coupling has been investigated. Golob et
al. demonstrated a benefit of genetically im-
paired collagen turnover on RV-PV coupling in a
HySu model of PAH (25) and no effect from mi-
tochondrial DNA mutation on RV-PV interac-
tions (24) using P-V analysis. These studies
provide important insights; however, more in-
vestigation is needed to understand the underly-
ing molecular mechanisms that regulate RV
function and RV-PV interactions.

P-V loop analysis in small-animal models pro-
vides a unique opportunity to study and under-
stand the effects of molecular and cellular events
leading to RV-PV uncoupling and RV failure. Fu-
ture studies should help determine how modifi-
cations to cellular and extracellular structure
impact RV-PV interactions, while providing a
better understanding of the signaling pathways
responsible for the transition from maintained
RV function in the presence of increased after-
load to RV failure.

Conclusions

The optimum management of PAH remains elu-
sive. Evaluating the adequacy of hemodynamic in-
teractions between the PV and RV through
ventricular-vascular coupling is a powerful tool
that should help in understanding disease devel-
opment and progression as well as in the develop-
ment, translation, and monitoring of novel
therapies. Recommended areas of future work in-
clude:

1) Long-term studies on prognostic relevance of
RV-PV interactions during both rest and ex-
ercise for PAH patients

2) Development of large-animal models that
recapitulate pulmonary vascular disease
phenotypes and enable validation of
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pressure-only and volume-only approxima-
tions of VVC in healthy and diseased states

3) Consideration of RV-PV interactions in
mechanistic studies to account for drivers
of both RV supply and PV demand. ®
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