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1| INTRODUCTION

| Naomi C. Chesler> | Jeffrey T. Linderoth® |

Abstract

The ability of future engineering professionals to solve complex real-world problems
depends on their design education and training. Because engineers engage with open-
ended problems in which there are unknown parameters and multiple competing
objectives, they engage in fuzzy decision-making, a method of making decisions that
takes into account inherent imprecisions and uncertainties in the real world. In the
design-based decision-making field, few studies have applied fuzzy decision-making
models to actual decision-making process data. Thus, in this study, we use datasets on
student decision-making processes to validate approximate fuzzy models of student
decision-making, which we call data-enabled cognitive modeling. The results of this
study (1) show that simulated design problems provide rich datasets that enable
analysis of student design decision-making and (2) validate models of student design
cognition that can inform future design curricula and help educators understand how

students think about design problems.
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of making decisions that takes into account inherent
imprecisions and uncertainties in the real world. Fuzzy

Always a central aspect of the engineering field, design has
become a focus in engineering education in recent decades.
Throughout engineering design education, decision-making
is an important element in defining the problem, deciding
which elements of a project to work on first, and choosing
designs for testing. Thus, a key skill for 21st century
engineering students is the ability to make design decisions
and understand the complex social, environmental, and
economic consequences associated with each decision.
Because engineers engage with open-ended problems in
which there are unknown parameters and multiple competing
objectives, they engage in fuzzy decision-making, a method

decision-making uses numbers whose values do not refer to
one single, deterministic, or “crisp” value, but instead refer to
a range of possible values. However, very few studies that
report on fuzzy decision-making analyze actual engineering
students’ decision-making processes.

In this work, we examined how undergraduate students
make engineering design decisions through the lens of fuzzy
engineering design decision-making and developed a mathe-
matical framework to quantify their decision-making pro-
cesses. In particular, we first collected discourse data from a
small sample of students (n = 13 students) who individually
solved a simulated engineering design problem. We then
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analyzed this data to inform and develop two sets of decision-
making models: crisp and fuzzy. Finally, we applied these
models to data from a virtual internship program in which
students (n = 175 students) worked in teams (n =35 teams)
on the same simulated design problem in the context of an
internship simulation. Since we used large sets of student
discourse data to test these proposed models, which to our
knowledge is the first report of data-enabled validation of a
decision-making model, we call this approach data-enabled
cognitive modeling.

Understanding and modeling student decision-making
based on collected student process data has several important
applications for engineering design education. First, when
creating design problems or scenarios for students, educators
can use the appropriate cognitive models to guide their
curriculum development and create opportunities for students
to practice appropriate decision-making in the context of design.
Such cognitive models are especially useful in digital and
computer applications of design problems because the models
drive the development and design of virtual design problems.

Model-based virtual design problems offer several
advantages for engineering educators. First, all students are
given the same simulated design problem to solve and the
same resources with which to solve it. This approach gives all
students an equal starting point and provides a basis for
standardized assessment. Instructors can collect student
process work in the form of digital engineering notebooks,
conversations, or reports and collect student product work in
the form of final design specifications. Using this collection
of student work, instructors can make valid comparisons
among different students’ design thinking and assess
students’ design thinking against engineering learning
standards.

Second, model-based simulated design problems facili-
tate scaling up and allow for a sophisticated yet accessible
examination of design learning with a large number of
participants. In turn, such digital learning environments can
also offer a way for educators to scale up their instruction and
provide more students access to quality design instruction
which simulate real-world uncertainties.

Thus, developing and testing design-based decision-
making models help educators and researchers better
understand how students are thinking about design problems
and guide students through critical decision-making pro-
cesses that better align with how engineers design under
realistically imprecise and uncertain conditions.

2 | THEORY

2.1 | Engineering design education

Design is a critical part of the engineering profession [19,43].
As aresult, design is a central focus of engineering education

in terms of teaching, learning, and assessment [7,21]. In a
recent study, Sheppard et al. [42] interviewed faculty and
students about the field of engineering and concluded that
design is the most critical component of engineering
education. One faculty member asserted that “guiding
students to learn “design thinking” and the design process,
so central to professional practice, is the responsibility of
engineering education” (p. 98).

Two decades ago, ABET, the accreditation board for
engineering programs, developed criteria that included
opportunities for design learning. ABET [1] defined
engineering design as the “process of devising a system,
component, or process to meet desired needs. It is a decision-
making process (often iterative), in which the basic sciences,
mathematics, and the engineering sciences are applied to
convert resources optimally to meet these stated needs” (p. 4).
According to ABET and others [23,45], decision-making is
integral to engineering and occurs in nearly every phase of the
design process. Engineers make critical design decisions
during concept exploration, research, model selection,
feasibility analysis, prototype testing, and final design
documentation [14,48].

In an authentic engineering design process, engineers
most often deal with ill-structured problems that do not have
specific procedures, possess conflicting goals, and unexpect-
edly develop complications [20,29]. In these types of open-
ended and complex scenarios, design-based decision-making
requires the engineer to consider the possibilities that may
result from imaginable choices and make reasonable
estimates based on limited information. Using their experi-
ences and content knowledge, “designers construct and
impose a coherence of their own. .. Their designing is a web
of projected moves and discovered consequences and
implications, sometimes leading to a reconstruction of the
initial coherence—a reflective conversation with the materi-
als of a situation” [39]. Engineering design problem have
many feasible solutions, but such solutions fall within a
reasonable set of designs that have been chosen to satisfy
particular design goals as best as possible. Therefore, one of
the key processes in engineering design, and thus a critical
aspect in design education, is the way in which engineers
make design decisions.

2.2 | Engineering design-based decision-
making

2.2.1 | Theoretical and mathematical models

In the last several decades, engineering design decision-
making has been studied, parameterized, and represented
mathematically. In the late 1990s, Hazelrigg [25,26] argued
for an engineering design decision-making framework based
on elements from classical decision theories. These decision
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theories make claims about how people make decisions in real
world situations. Originating in the field of economics, the
traditional point of view is that the preferred decision is the
option whose expectation has the highest value [49].
Connecting to research in decision-making in economics,
Hazelrigg claimed that decision theory can be applied to
engineering design because design involves decision-making
under uncertainty and risk. He defined uncertainty as a lack of
precise knowledge regarding the inputs to a model (which
may include manufacturing variations, unanticipated wear
and tear, or future cost of maintenance) and risk as the result
of uncertainty on the outcome of decisions.

At its simplest, Hazelrigg’s framework claims that
engineering involves two steps: (1) determine all possible
design options and then (2) choose the best one. This assumes
that the engineer is a rational decision-maker who will choose
the option with the highest expected value. Using this
framework, Hazelrigg began to quantify engineering design
decision-making and identified the design vector, x, which is
the set of variables that an engineer can choose, such as
dimensions or materials. His framework also included the
logical process of decision-making. He constructed a set of
axioms for designing and formulated two theorems that could
be applied to statistical models that roughly account for
uncertainty, risk, information, preferences, and external
factors. The expected utility theorem states that given a
pair of designs, each with a range of possible outcomes and
associated probabilities of occurrence, the preferred choice is
the design that has the highest expected utility, a scalar that
indicates the value of the choice. Thus, the preferred design is
the design with the highest utility value, U.

In order to calculate the total utility of a device, engineers
consider multiple performance criteria [11,41,44,45]. Engi-
neers consider not only the required functionality, but several
other criteria, including the cost, reliability, manufacturabil-
ity, and aesthetics of a product. Because there are multiple
criteria, some criteria may contradict each other and require
tradeoffs to be made when making choices. To analyze these
tradeoffs, engineers may rank design choices using various
methods [6,22,48]. A design decision matrix allows engineers
to assign a ranking value to every design choice for every
performance parameter [34]. For example, if an engineer is
examining materials for a bicycle frame design, they may
assign rankings to several different materials—stainless steel,
aluminum, or a composite—for strength. The engineer may
also rank these three materials for compression strength and
brittleness. The rankings that are assigned could be
unweighted (i.e., equally weighted) or they can be weighted
according to the importance of the particular performance
parameter. To determine the importance of the performance
parameter and thus the weight of the ranking, a commonly
used mathematical method is the Analytic Hierarchy Process
[38]. In this method, the engineer conducts comparisons of the

performance parameters or attributes and assigns a value to
each attribute that represents how much more important one
attribute is over the other. These values are then assembled
into a matrix and the eigenvalues are calculated. Thus, each
attribute has a respective weighting and the weights across all
attributes sum to one.

To obtain one scalar utility for each design, engineers
combine the rankings for the various performance attributes.
If the rankings are on the same scale, then a weighted-sum
model in which the weighted rankings are summed across all
attributes for each design can be used [16,24]. If the rankings
are not on the same scale, the engineer may prefer to use a
weighted product model that multiplies the ratios of one
design to another design for each attribute. In either case, the
goal is to obtain one total utility value for each design such
that a comparison can be made among possible designs. The
total utility function then is a function of the design vector,
U(x), that ranks the multiple attributes of a design to obtain
one total utility.

In this classical decision-making model, once the
engineer has obtained a total utility for each device, they
can compare the utilities of various devices to determine an
optimum design. In design, one common method for
comparing devices (or performance attributes) is by
conducting pairwise comparisons [23,40]. The pairwise
comparisons can be organized in a chart or matrix that lists
all the options as rows and columns and then assesses each
pair of options. When comparing pairs of designs, a pairwise
comparison matrix allows the engineer to take two options at
atime, x| and x,, and compare the options using utility values.
The engineer can then evaluate which design is preferred
based on its utility value and assign a preference, p. This
preference value can be a simple statement (1 = x; is preferred
over x;, —1 =x; is not preferred over x;, or 0 = neither x,or
Xois preferred) or a more complex function. For example, the
pairwise comparison matrix in Table 1 compares three
designs: x1, x5, and x3. This matrix values indicate how much
the design in the row is preferred over the design in the
column. In this example, xis preferred two times less than x;
but, x;is preferred four times more than x3. This pairwise
comparison matrix is assembled as an antisymmetric matrix,
where the diagonal consists of zeroes and the bottom triangle
of the matrix has opposite signs.

TABLE 1 Example of an antisymmetric pairwise comparison matrix
with preference scores that indicates how much the design in the row is
preferred over the design in the column

X1 X5 X3 Preference score (¢b)
X 0 p=-2 p=4 2
X p=2 0 p=3 5
X3 p=—4 p=-3 0 -7
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To simplify the decision-making process when deciding
among several designs, an engineer can opt to sum the rows of
the pairwise comparison matrix to obtain a preference score.
Formally, the preference score between two designs, x;and
each of the other possible designs is

k
d)xl Xk = ;pi

where the preference values, p, are being summed for one
row, i, that compares x;to each possible devices, x; (Table 1).
More generally, the preference score is a function of the
utility, ¢(U). Thus, the preference score allows for each
device to have one value associated with it that the engineer
can use to represent a quantifiable preference for that design.

2.2.2 | Fuzzy decision-making

When applying utility functions and conducting pairwise
comparisons, Hazelrigg' claims that engineers make deter-
ministic and precise decisions. However, this is not always the
case. Particularly in the preliminary stages of design,
engineers often work with a vague, incomplete description
and make design decisions to reduce the ill-formed nature of
the problem [3,51]. Even in the later stages of design, when
the design problem is likely to have been defined more
clearly, deterministic and precise decision-making may not be
possible for the engineer to use in producing a final product.
In many cases, engineers design completely innovative
products and do not know the product’s exact performance
parameters until the design is finalized and manufactured
[13,18]. Thus, engineering design decision-making involves
not only uncertainty and risk, but also imprecision, which is
uncertainty when choosing among designs. Because there is
imprecision in the decision-making process, there is not
always one clear choice in a design situation and engineers
therefore make choices based on their preference for one
device over another. This preference could be based on
objective evidence or subjective past experience. Antonsson
and Otto [3], (p.27) explain,

An imprecise variable in preliminary design is a
variable that may potentially assume any value
within a possible range because the designer
does not know, a priori, the final value that will
emerge from the design process. The nominal
value of a length dimension is an example of an

'Hazelrigg briefly mentions the possibility of using fuzzy logic to
determine utilities of alternatives in a footnote in 1998, but doesn’t
elaborate on this concept.

imprecise variable. Even though the designer is
uncertain about what length to specify, they
usually have a preference for certain values over
others. This preference, which may arise objec-
tively (e.g., cost or availability of components or
materials) or subjectively (e.g., from experience),
is used to quantify the imprecision with which
design variables are known.

In other words, engineers can be precise with calculations
about known situations, but during the creative design process
they routinely face unknown situations, and in turn, develop
preferences and use imprecise variables. Thus, engineers
engage in an approximate way of thinking or what is referred
to as fuzzy decision-making [8,35,47,55]. This framework for
decision-making uses the mathematics of fuzzy numbers,
which are approximations of numbers. A single fuzzy number
does not refer to one single value but rather can be thought of
as a function or a range of possible values. The function that
determines a fuzzy number is known as a membership
function which determines the degree of membership of
values with the range of the fuzzy number [30,54]. In contrast,
a crisp number [30] has a single, deterministic value.
Antonsson and Otto [3] provide an example of fuzzy versus
crisp decision-making in engineering design (Figure 1):

Specifications and requirements also embody
design imprecision, even though most are
written as if they were crisp, e.g., “This device
must have a range of at least 250 km.” Such a
requirement implies that given two designs
arbitrarily close together, one with a range of
250 km and one just below, the first would be
acceptable but not the second, as shown by the
dashed line.

range

FIGURE 1 Plot of preference for a product (from 0 to 1) versus
the desired range. Dotted line represents the crisp number and solid
line represents the fuzzy number (Figure taken from Antonsson and
Otto [3])
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In Antonsson and Otto’s design scenario, there is a
preference function, y,, that ranges from zero (not preferred)
to one (preferred). In the crisp decision-making scenario,
shown by the dashed line, if a design meets or exceeds the
250 km functional requirement, then the design is preferred
(u, = 1). If the design falls anywhere below the 250 km
functional requirement, then the design is not preferred
(1, = 0.) On the other hand, in the fuzzy decision-making
scenario, shown by the solid line, the preference function
becomes a range of possible values from zero to one. As the
performance of the device approaches 250 km, the preference
increases. As the performance of the device exceeds 250 km,
the preference continues to increase until it plateaus at a
maximum value of one. Therefore, the crisp decision making
function only allows for a binary decision-making process
(either zero or one) whereas the fuzzy decision-making
function allows for a range of values between zero and one.

Similarly, if an engineer is conducting a pairwise
comparison and compares two utilities that are close in
value, then they might determine that these two designs are
the same, even if the utilities are not exactly equal. From the
engineer’s perspective, the functional requirements or
customer requests are not crisp, but have some fuzziness
associated with them.

The fuzziness of the number may be represented with a
membership function that is linear, quadratic, triangular, or
some other mathematical relationship [30,54]. If the
membership function of the fuzzy number is complex and
difficult to interpret, fuzzy numbers can be approximated
using various methods. One approximation method is using a
piece-wise linear function [12,17,28,53]. The piece-wise
linear function models linear intervals that exist in close
proximity to the fuzzy number and thus approximates a
continuous membership function (Figure 2). Approximating
fuzzy numbers using piece-wise linear functions have several
benefits. Approximations may help reduce calculations
errors, reduce the amount of computational resources
required, and provide more interpretable results than
complicated membership functions [36]. Approximations
are not only useful for more complicated membership
functions, but are also used when the membership function
is unknown. In these unknown cases, the membership
function can be approximated from a set of samples and an
approximate fuzzy membership function can be abstracted
from the samples [30]. Taken together, both approximations
and actual membership functions represent fuzzy numbers
that account for the fact that in real world engineering design
decision-making there is some degree of inherent
imprecision.

Although there have been several proposed fuzzy engineer-
ing decision-making models with worked examples
[31,32,35,50,52,54], there have been few studies that examine
authentic fuzzy decision-making processes of either actual

plecewise
v p approximation

crisp
fuzzy

250 km

FIGURE 2 Plot of preference for a product (from 0 to 1) versus
the desired range. Dotted line represents the crisp number and solid
line represents the fuzzy number. Darker solid line represents
piecewise linear approximation of fuzzy number

engineers or student engineers (See ref. [46] for one example). In
our work, we examined how undergraduate students make
engineering design decisions through the lens of fuzzy
engineering design decision-making and developed a mathe-
matical framework to quantify their decision-making processes.

2.3 | Simulated engineering design problems

To examine authentic decision-making processes, we studied
how students solve simulated engineering design problems in
which real students design virtual devices. The simulated
design problem that we analyzed is posed within a virtual
internship that our group has previously developed for first-
year introduction to engineering design courses, Nephrotex.
As has been described in detail elsewhere [9,10] students in
Nephrotex role-play as interns to design a filtration membrane
for a hemodialysis machine. Individually they conduct
background research and summarize customer requests and
technical constraints. Then, in teams, they design and test
several devices before deciding on a final prototype. When
deciding on a final prototype, students consider conflicting
stakeholder requests and choose a design that best meets all of
the stated thresholds. For example, the clinical engineer is
concerned about the blood cell reactivity and flux of the
filtration membrane, and the manufacturing engineer values
reliability and cost. At the end of the course, student teams
select and present their final hemodialysis machine filtration
membrane design to their colleagues and instructor.

The simulation collects a rich dataset on students’
decision-making processes, which includes data on students’
choices for testing designs, students’ final prototypes, and
digital notebook entries in which students justify their design
decisions. Based on this collection of data, to examine student
decision-making processes we consider the simulated
problem used within Nephrotex as a representation of a
real engineering design problem. An advantage of this



‘L WILEY

ARASTOOPOUR IRGENS ET AL.

approach is that the numbers of input choices and perfor-
mance parameters, as well as the information provided, are
fixed. Thus, multiple students can solve identical design
problems. This allows for a standard comparison among
students’ design decisions and decision-making processes.

To understand students’ cognitive processes when solving
a simulated design problem, we used data from a previous
study in which we conducted several cognitive clinical
interviews [4]. Such interviews are semi-structured, task-
focused events developed to investigate student thinking and
understanding of a task or event. This method has been used
extensively by researchers in education [15,33,37]. Inter-
views begin typically by providing the participant with a
prompt for tasks and relevant tools. As the participant
completes the task, the researcher encourages the participant
to discuss their thinking and asks the participant questions
along the way. The researcher may explore different ways of
framing the task or may ask impromptu questions after
receiving a particular response from a participant. The goal of
the interview is to “allow the interviewee to expose his/her
natural ways of thinking about the situation at hand” [15]. In
other words, the researcher is collecting evidence that
explicitly reveals how a participant is thinking about a
situation or task.

In our prior work, we conducted cognitive interviews
with undergraduate students [4]. We asked participants to
individually solve the simulated design problem in
Nephrotex and explain their strategies and choices. We
then analyzed the results of the cognitive interviews for
details about students’ design decision making when
solving a simulated design problem. In our previous
work, we discovered that students were incorporating fuzzy
utility functions when comparing multiple attributes, as well
as incorporating fuzzy pairwise comparisons when compar-
ing among designs. For this current study, we used the
analyses from these prior cognitive interviews to inform the
design of our mathematical models. Then, we tested these
models on digital data collected from students who solved
the simulated design problem in teams by participating in
the Nephrotex virtual internship (Figure 3).

We call this approach data-enabled cognitive modeling.
This framework mathematically models cognitive decision-
making processes and validates decision-making models
using process data from participants in authentic settings. In
other words, our approach uses real-world data to validate
mathematical decision-making models.

2.4 | Research questions

To validate the decision-making models, we collected data
from a previous study with cognitive interviews in which
students engaged in the simulated design problem from
Nephrotex. We validated two models: (1) a crisp model,

which included a crisp utility model, and a (2) fuzzy model,
which included a fuzzy utility model, fuzzy preference score
model (based on pairwise comparisons), and a fuzzy percent
change preference score model (which was a modified
version of the fuzzy preference score model). Our fuzzy
models used piecewise functions to approximate a fuzzy
membership function. Table 2 summarizes the two categories
of models. Then, we correlated each of these models with the
devices that students chose as their final design to determine
which of these models was most useful for representing
student engineers’ design-based decision-making.
Our research questions were:

1. Does the distribution of devices that students selected as
their final device provide evidence for design-based
decision-making in Nephrotex?

Are crisp utilities a significant predictor of students’ final

design selections?

3. Are fuzzy utilities a significant predictor of students’ final
design selections and how does this model compare to the
previous model?

4. Are fuzzy preference scores a significant predictor of
students’ final design selections and how does this model
compare to the previous models?

5. Are fuzzy percent change preference scores a significant
predictor of students’ final design selections and how does
this model compare to the previous models?

N

3| METHODS

3.1 | Virtual internship description

In Nephrotex, students role-play as interns at a fictional
medical device design company, where they work in teams to
design dialyzer membranes for ultrafiltration. Research and
design activities and team interactions all take place through
the web platform, which includes an email and chat interface.
Acting as interns, they send and receive emails to and from
their supervisor and use the chat window for instant
messaging with other team members and their assigned
design advisor.

After collecting and summarizing research data, interns
begin the actual design process using the simulated
engineering drawing tool. First individually and then in
teams, students develop hypotheses based on their research,
test these hypotheses in the provided design space, and
analyze the results provided. The design space contains four
inputs and five outputs (Figure 4). Interns also become
knowledgeable about internal consultants within the company
who have a stake in the outcome of their designed prototype.
These consultants value different outputs, which are
essentially performance attribute. Each of the five internal
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Conducted Cognitive
Interviews

Conducted cognitive
interviews with
students(n = 13)

Developed Models

Developed crisp and
fuzzy models based
on discourse “think
aloud” data collected

Tested Models

Tested models using
decision-making data
collected from virtual
internship students

who solved a
simulated design
problem individually
in lab setting

from cognitive
interviews

(n=175) working in
teams(n=35)ona
simulated design
problem

FIGURE 3 Experimental approach for developing and testing models

consultants in Nephrotex prioritizes two output parameters
(i.e., performance attributes) and identifies specific threshold
values for each output. For example, the clinical engineer
would like a high degree of biocompatibility and high flux,
and the manufacturing engineer would like a device with high
reliability but low cost. The stakeholders’ concerns are often
in conflict with one another (e.g., as flux increases, cost also
increases), reflecting the conflicting demands common in
professional engineering design.

During the second half of the internship, students switch
teams and inform their new team members of the research they
have conducted thus far in the internship. In the new teams,
students test more devices, analyze the second iteration of
results, and make a choice for a final prototype. During the final
days of the internship, students present their final device design
and justify their design decisions to the class and instructor.

3.2 | Virtual internship design space

All design problems, including the simulated problem in
Nephrotex, have a set of inputs (design choices) and outputs
(functions or performance parameters). Mathematically, the
set of inputs can be described as a set I = {i1,is,...,ip}
where each i represents an input category. In turn, each input
category i is composed of a set of choices, C; =
{ci,ch,...,cl} where each element ¢’ within C; represents
a choice within category i.

For example, in the virtual internship, Nephrotex, the set
of inputs is described as

I = {material, surfactant, process, carbonnanotube (cnt)}.

TABLE 2 Summary of models developed and tested in this study

The choices for the first three categories material,
surfactant, and process are categorical where

Cumaterial = {PSF, PRNLT, PMMA, PESPVP, PAM}

Cisufactant = {hydrophillic, negative charge,
sterich indrance, biological, none}

Corocess = {phase inversion, dryjet wet, vapor deposition}.

The choices for the last category, cnt, are numeric and
ordered where

Cen = {0,0.5,1,1.5,2,4,6,10,15,20}.

A potential solution for a design problem, that is, a set of
design choices, is within a design space, X, where
X = Xx;€IC;. A set of design choices can be described as a
vector x = [x;,, X, - . .,x;, | for which there is one choice for
every input category, i. There are four input categories in
Nephrotex, so x is always a vector with four elements,
[xmaterial; Xsurfactant Xprocess s xcm} - One example of a solution (or
possible device design) in Nephrotex is

x = [PAM, Hydrophilic, Phase Inversion, 2%).

Within the design space, X, there is a space, D, that consists of
the devices that students have selected as their optimum, final
design. The elements within D are represented as solution
vectors, d.

In design problems, there is also a set of outputs,
whereO = {01, 0,,...,0,}, in which each element of ois an
aspect of design function or performance. The performance of

Function
Model U(x) Px) Poa (x)
Crisp Crisp utility - -
Fuzzy Fuzzy utility Fuzzy preference Fuzzy percent change preference
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Material

= Polysulfone

= Polyrenalate

= PMMA

= Pes-Pvp Blend
= Polyamide

Manufacturing Process

= Phase Inversion

= Dry-Jet Wet Printing

= Vapor Deposition Polymerization

Surfactant

= Biological

= Hydrophillic

= Negative Charge
= Steric Hindering
= None

Carbon Nanotube Percentage
= 0% = 4.0%

= 0.5% = 6.0%

= 1.0% = 10%

= 15% = 15%

= 2.0% = 20%

Biocompatibility |

Reliability |

Marketability |

Cost |

Flux |

FIGURE 4 Nephrotex design space with four categories of inputs (left) and five categories of outputs (right). In the text below, Polysulfone
is abbreviated PSF, Polyrenalate is PRNLT, Pes-Pvp Blend is PESPVP and Polyamide is PAM

every solution to the design problem, which we call y, must
reside within the output space, that is yeR?. In general, the
performance is a n dimensional vector [y;, y,, . . ., y,,] for which
there is one real number value for every output category. In
Nephrotex, there are five aspects of performance for which the
student is designing, so the vector O has five components:

O = {marketability, cost, reliability, flux, bcr}.

A representative solution to Nephrotex is a device with
marketability 600,000, cost $120, reliability 8 hours, flux
23 m*/day and blood cell reactivity 43.3 ng/ml. Thus, the
performance of this device can be described as:

y = [600000,120,8,23,43.3]
where

ymarketability = 6000007ycost = 12anreliabilily
= 87yf1ux = 23aybcr =433

In all design problems, the selection of inputs affects the
performance of the device. Thus, the design function can be
represented as a mapping from the solution space, X, to
the performance space, Y, which is a subset of real values in

the output space
F:X->YCR

Or

fx)=y

Where x is a design vector and y is a performance vector.
For example, in Nephrotex,

f([PAM, Hydrophilic, Phase Inversion, 2%))
—"600000, 120, 8, 23, 43.4].

3.3 | Virtual internship participants

We implemented the Nephrotex virtual internship into two
first-year, introductory, cornerstone engineering design
courses at two large institutions. The first implementation
occurred in fall 2013 at a university and contained 24 students
in 5 student teams. The second implementation occurred in
spring 2014 at a different university and contained 152
students in 30 student teams. In total, we collected final
device specifications from 35 student teams in Nephrotex and
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TABLE 3 Stakeholder requests and thresholds in Nephrotex
Stakeholder QOutput

Padma Rao Clinical Engineer Blood cell reactivity

Flux
Rudy Hernandez Marketing Manager Cost
Marketability
Alan DuChamp Manufacturing Engineer Cost

Reliability
Flux
Reliability

Michelle Proctor Product Engineer

Wayne Anderson Focus Team Leader Blood cell reactivity

Marketability

thus collected the design specifications of 35 devices. We
used this entire sample of 35 student teams final device
specifications to test all four models.

3.4 | Crisp methods

3.4.1 | Crisp utility model

In Nephrotex, the stakeholders collectively request that the
device performance parameters meet a total of 20 thresholds.
Each stakeholder identifies two outputs and then identifies
two thresholds values for each output—a required threshold
and a preferred threshold (Table 3).

Design advisors in the virtual internship advise students to
meet as many of the thresholds as possible, thus implying that
one of the main objectives of the design problem is to design a
device with the highest utility value possible. One of the ways
to model utility is by using crisp numbers. The output-specific
crisp utility function, uirisp (), consists of assigning one point
for every threshold, 7z, that a device satisfied for a given
output, j. This method is considered a crisp method because
there is no flexibility when determining the utility of a device
specification—the device either meets the threshold or the
device fails to do so (Figure 5).

The output-specific crisp utility function, is represented as

0ify < 7
1ifd <y<d
2ifd <y <7,
3ifdy <y <7,

4 ify>7

u]crisp (y ) =

That is, the crisp utility function indicates how many
thresholds a device meets for one output. The result of
Uerisp(y) then is either 0, 1, 2, 3, or 4.

Requirement Preference

75 ng/ml 40 ng/ml

10 m*/sm? per day 17 m*/sm? per day

$120 $110

400,000 projected units/yr 550,000 projected units/yr
$140 $95

Shr 9 hr

12 m*/sm? per day 13.5 m*sm? per day

1.5 hr 8 hr

90 ng/ml 65 ng/ml

250,000 projected units/yr 650,000 project units/yr

Based on data collected from previous [5], our first
hypothesis was that students calculated the utility of a device
by summing the utilities, or number of thresholds that a device
satisfies, across the outputs to obtain a total utility, Ucgp.

Ucrisp (y) = Z u];risp (_Y)
jeo

For example, if a device meets all of the marketability
thresholds, one of the cost thresholds, all of the reliability
thresholds, three of the flux thresholds, and three of the BCR
thresholds, then its crisp utility is calculated as 15 (Figure 6).

3.5 | Fuzzy methods

3.5.1 | Approximate fuzzy utility model

Based on data collected from cognitive interviews [4], our
second hypothesis was that students used fuzzy numbers to
calculate utility. To create fuzzy models, we used approx-
imations of fuzzy numbers that were more nuanced than the
crisp numbers. As an initial approximation of a fuzzy utility

4 o
Z3 ~—
=
=1
= 5
0
S 2 *———

1 ——

0 d

6 8 10 12 14 16 18 20
Flux Output

FIGURE 5 Crisp utility score for every possible threshold met

for flux output
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Device # | Material Surfactant | Process | CNT% | Marketability | Cost | Reliability | Flux | BCR
240 PESPVP Steric Vapor 20 900,000 130 11 15 433
Hindrance
Device specifications (inputs) and results (outputs)
¥
Device # Marketability Cost Reliability Flux BCR Total Crisp
Thresholds Met | Thresholds Thresholds Thresholds Thresholds Utility
Met Met Met Met
marketability
crisp P .
ug:lsstp u;ﬁ;zbtllty uﬂ:‘s’; ugﬁilsp Ucrisp
240 4 1 4 3 3 15]

Number of Thresholds met for each output and the utility score.

FIGURE 6 Example of calculating crisp utility for device #240

model, we revised the crisp utility model so that it used
additional values that were not given as explicit thresholds in
Nephrotex. These additional values were derived from data
collected in the cognitive interviews which showed that
students made design decisions based on two self-con-
structed, additional intermediate thresholds. If the device met
their constructed thresholds, the student was more likely to
choose the device than if it did not meet their constructed
thresholds. This type of decision-making process can be
interpreted as a form of fuzzy decision-making.

As an approximation of a fuzzy number membership
function, we used a piecewise linear function. To construct this
model, we added additional utility values in the fuzzy model that
are between the crisp utility values (from 1 to 4) (Figure 7), which
allowed for values intermediate to the ones in the crisp model.

As an example, the lowest threshold to meet for flux in
Nephrotex is 10 r’n"—;s (meters cubed per second times meters
squared). In the crisp utility model, a device that has a flux of
10 yields a crisp utility of 1. The next stakeholder threshold is
12, so devices that have a flux of 11.5, 11, and 10.5 would all
be assigned a utility score of 2 in the crisp model. However,
the fuzzy model assigns a device with a flux of 11 and 11.5 an
intermediate utility score of 1.5. In other words, we assign
different utilities to intermediate values between stakeholder
requests, which we call fuzzy utilities (Table 4).

Then, for each device we summed the fuzzy utilities to
obtain a total fuzzy utility, Ufuyy.

Ufuzzy (y ) = Z uéuzzy (y )
jeo

For example, the same device, used as an example for
calculating crisp utility had a crisp utility of 15, but has a
fuzzy utility of 16.5 (Figure 8).

3.5.2 | Fuzzy preference score model

A fuzzy pairwise comparison compares two devices or
choices and assigns a fuzzy comparison value instead of a

crisp value. Because fuzzy numbers can be thought of as a
family of nested intervals, in this study, we approximated a
fuzzy comparison by employing a piecewise function. In this
function, there exists some epsilon value when comparing
two devices which allows for a range of numbers rather than
one fixed number (Figure 9). The epsilon values takes into
account some flexibility, or tolerance, in determining whether
one device performs better or worse than another. For
example, if one device has a utility of 13 and another has a
utility of 14, an engineer may determine that the two devices
have equal utility if he considers epsilon to be greater than 1.0.

Thus, the fuzzy pairwise comparison matrix (PCM) is
defined by the function PCMg ,, where

fuzzy

Lif Utuzzy (f(x1)> — Utuzzy (f(x2)> > €
PCMS,,, (x1%2) = { 0if — € < Upy (f(x1)> — Utunny (f(x2)> <e

1 Uty (1)) = Unuay (F(12)) < —€

4.5

3.5 oe—=

2.5 O

Fuzzy Utility

1.5 —oO

0.5 o———=C

6 8 10 12 14 16 18 20
Flux Output

FIGURE 7 Fuzzy utility function which approximates fuzzy
numbers with a piece-wise linear function. Example is shown for flux

output
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TABLE 4 A Comparison between crisp valuations and fuzzy valuations for the flux output

Stakeholder threshold for

flux (zM%) Crisp utility u{%,
A = 10 1
A = 2 2
% =135 3
Z = |7 4

That is, the pairwise comparison matrix indicates, for each
pair of designs, whether one is preferred over the other, given
some epsilon value. If the total utility of device x;is greater
than the total utility of devicex;, then the result of the function
is 1. If the total utility of device x,is equal to the total utility of
device x,, then the result of the function is 0. If the total utility
of device x;is less than the total utility of devicex;, then the
result of the function is —1. This comparison is repeated for all
possible devices, x, in X. The complete result of PCMyy,,y is a
square matrix with values —1, 0, and 1.

For this study, we constructed a pairwise comparison
matrix of all 570 devices using the fuzzy utilities and an
epsilon value of 2.5. We determined the epsilon value of 2.5
empirically from the results of the student cognitive inter-
views. According to the interviews, on average, students

)

Fuzzy utility ufy (y)
with membership function p(y)

0if0<y<a
my) = q Sifasy<m
lifr1 <y
where a =7 for the output flux
lifr<y<b
Ha(¥) = LSifb<y<mn
2if <y
where b =11 for the output flux
2if n<y<c
u3(y) = q 25ifc<y<m
3if <y
where ¢ =13 for the output flux
3ifns<y<d
Ha(y) = § 35ifd<y<m
4if ra <y

where a = 15 for the output flux

considered the utilities of two devices equal when the
differences were less than 2.5.

Lastly, to obtain one value for every device, which we call
the fuzzy preference score, we summed each row of the
PCMg,,,, matrix. The fuzzy preference score, ¢y, is
calculated as

¢fuzzy (x) = Z PCM‘f?uzzy (x)

xeX

For example, if device 1 has a fuzzy utility of 8.2, device 2
has a fuzzy utility of 10.6, and device 3 has a fuzzy utility of
16.4, and device 4 has a fuzzy utility of 18.8, then device 3 and
device 4 would be tied for the best device because they both
have a preference score of 2 (Table 5).

Device # | Material | Surfactant | Process | CNT% | Marketability | Cost | Reliability | Flux | BCR
240 PESPVP Steric Vapor 20 900,000 130 11 15 | 43.3
Hindrance
Device specifications (inputs) and results (outputs)
Device # Marketability Cost Reliability Flux BCR Crisp Utility
Thresholds Met | Thresholds Thresholds Thresholds Thresholds
Met Met Met Met
marketability U,
fuzzy wcost reliability flux uber Juzzy
fuzzy fuzzy ufuzzy fuzzy
240 4 1.5 3:5 35 16.5

Number of Thresholds met for each output and the utility score.

FIGURE 8 Example of calculating fuzzy utility for device #240
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| PCMSy (11, %5)

[uN

-8 -6 -4 -2 0 2 4 6 8
Ufuzzy(f(xl)) - Ufuzzy(f(xz))

FIGURE 9 Possible values for the fuzzy pairwise comparison
matrix given two devices

3.5.3 | Fuzzy percent change preference score
model

In this model, we incorporated our fuzzy pairwise comparison
function in addition to a percent change function to account
for devices that had fuzzy utilities within 2.5 units. According
to the cognitive interview results, if two devices were within
2.5 utility units, then students calculated the percent
difference. This updated PCM piecewise function now
contains a non-linear component (Figure 10).

This function is defined by the function PCMty,y %4
where

VI Uiy (1)) = Uty (F22)) > €
PCME,,, s (¥1,%2) = § P(x1, %2)if — € < Upuy (f(x,)) — Uty (f(xz)) <e

=1 if Utuzy (f(xl)) - Ufuzzy(f(x2)) < -€

where

P(x1,x) = jg)#}/y%/)

All P(x;,x;)values were rescaled such that they ranged
from —1 to 1 and were on the same scale as the other pairwise
comparison scores. The result of PCMfuzzy'% » then s a square

matrix in which the rows and consist of —1, 1, and, instead of
0, these values are now replaced with values ranging from —1
to 1. Finally, we summed each row so that there was one fuzzy
preference score, gy, 4 (x), for each device (See Table 6
for an example).

3.6 | Poisson regression models with student
data

We used the data collected on the number of times students
chose a device for their final prototype to evaluate the
applicability of the crisp and fuzzy utilities to model
engineering student design decision-making. In particular,
we calculated the crisp utility, fuzzy utility, fuzzy
preference scores, and fuzzy percent change preference
scores of each of the devices selected by students in
Nephrotex. For each model, we first examined the summary
statistics and because our outcome variable distribution was
skewed (see result 1) and we are using count data, we
conducted a Poisson regression as it takes into account the
non-normal distribution of the outcome. We used this
method to predict the frequency of final devices selected
based on the values from each model. The regression was
used to determine how closely each model predicted student
data on their final device selection. For each model, we
computed a Wald test to determine if the predictor was
statistically significant (p < .05), and then we calculated the
deviance G? and the AIC [2] to determine the goodness of
fit. We compared these statistics among all four models.

4 | RESULTS

4.1 | Design-based decision-making

RQ 1: Does the distribution of devices that students selected
as their final prototype provide evidence for design-based
decision-making in Nephrotex?

Each team of students chose a final device at the end of the
virtual internship. Out of a possible 570 devices, student
teams chose 24 different devices. Because there were 35
student teams, several teams chose the same device. The
number of times a device was selected by student teams is
shown in Figure 11.

TABLE 5 Example of fuzzy pairwise comparison matrix with an epsilon of 2.5

X1 (Ufuzzy = 8'2’) X2 (Ufuzzy = 10'6)

xl(Ufuzzy = 82) - 0 -1
X2 (Ufuzzy = 106) 0 - -1
13 (Upuzay = 164) 1 1 -

%4 (Upuzzy = 18.8) 1 1 0

X3 (Ufuzzy = 16'4)

X4 (Usuzzy = 18.8) Fuzzy preference score ¢y,



ARASTOOPOUR IRGENS ET AL.

[

—_
o
) J
2o _——
§ '
o L4
s
g
-1
-2
-8 -6 -4 -2 0 2 4 6 8

Upuizzy (f (1)) = Upuzay (F(52))

FIGURE 10 Possible values for the fuzzy percent change
pairwise comparison matrix given two devices

We denote the most popular device as device 1, which was
chosen by eight student teams. Devices 2 through 9 were also
chosen by more than one student team in decreasing frequency
of selection and the remaining 15 devices were each chosen by
one team. The distribution of choices shows a skewed
distribution, suggesting that students use similar methods for
choosing final designs, but because this is a design problem
with no one correct answer, there is some variety in their
decision-making methods. Thus, we conclude that the
simulated problem in Nephrotex provides student design-
based decision making data with which we can test our models.

4.2 | Summary of results

All three models had significant predictors. The model with
the best fit according to AIC, deviance, and Wald statistic was
Model 4, the Fuzzy Percent Change Preference Score Model
(Table 7).

4.3 | Crisp utility

RQ 2: Are crisp utilities a significant predictor of students’
final design selections?

We constructed an initial model to predict student teams’
final device choice in Nephrotex. Our predictor for this model
was the utility of the device using the u.;sp function. The

WILEY—2

Poisson regression model was significant f=.36, Wald
2*(1,22) = 2.71, p < .05. This model had an AIC of 76.8 and
a G of 15.88.

4.4 | Fuzzy utility

RQ 3: Are fuzzy utilities a significant predictor of students’
final design selections and how does this model compare to
the previous model?

Using students’ fuzzy utilities as a predictor, the Poisson
regression model was significant f=.55, Wald
7*(1,22) = 2.88, p <.05. This model had an AIC of 75.2
and a G* of 14.28 and was a better fit than the model with a
crisp utility function.

4.5 | Fuzzy preference score

RQ 4: Are fuzzy preference scores a significant predictor of
students’ final design selections and how does this model
compare to the previous models?

Using students’ fuzzy preference scores as a predictor, the
Poisson regression model was significant f=.005, Wald
7*(1,22) = 3.37, p < .05. This model had an AIC of 73.4 and
a G? of 12.45 and was a better fit than the model with a fuzzy
utility function.

4.6 | Percent change preference score

RQ 5: Are fuzzy percent change preference scores a
significant predictor of students’ final design selections and
how does this model compare to the previous models?

Using students’ fuzzy percent change preference score,
the Poisson regression model was significant = .006, Wald
2*(1,22) = 3.57, p < .05. This model had an AIC of 72.5 and
a G* of 11.58 and was a better fit than the model with fuzzy
preference score function.

5 | DISCUSSION

The development of this study was based on the key idea that
imprecision occurs in real world, design-based decision-
making. As a result, engineers tend to make fuzzy decisions

TABLE 6 Example of fuzzy percent change pairwise comparison matrix with an epsilon of 2.5

%1 (Utizzy = 82) X2 (Utumy = 10.6)
X1 (Upizzy = 8.2) - -.25 -1
2 (tfuzy = 10.6) .25 - _
3(Unizzy = 16.4) 1 1 B
%4 (Usizzy = 18.8) 1 1 14

=

=

X3 (Utuzzy = 16.4)

X4 (Uruzzy = 18.8)  Fuzzy preference score Pruzzy

-1 -2.25
! -1.75
—-.14 1.86
- 2.14
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Number of Times a Device was Selected

S 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Device ID Number

FIGURE 11 Histogram of devices selected by students

based on a range of possibilities rather than a series of binary
or crisp decisions. In this study, we examined students’
decision-making processes while solving a simulated design
problem. We used results from a previous study in which we
conducted clinical cognitive interviews. Based on these
results, in this current study, we developed four models: crisp
utility, fuzzy utility, fuzzy preference score, and fuzzy percent
change preference score. We used simple, piece-wise linear

functions to approximate fuzzy membership functions for this
analysis. When these models were applied these models to
student decision-making data from a virtual internship, there
were differences in terms of the goodness of fit of these
models. The regression analysis showed that fuzzy models
more accurately represented students’ decision-making
processes than crisp models. The fuzzy model with the best
goodness of fit statistics was the fuzzy percent change
preference score model, in which students used a fuzzy utility
function and then conducted two different types of pairwise
comparisons between devices. These results align with
previous studies in which researchers developed fuzzy
models for multi-criteria decision-making and showed that
such fuzzy models are suitable for particular decision-making
scenarios [50,52]. For example, Triantaphyllou and Chi-Tun
[47] investigated five fuzzy multiattribute decision-making
methods based on the original and revised analytic hierarchy
model, the weighted-sum model, the weighted-product
model, and the TOPSIS method [27]. The authors concluded
that the fuzzy revised analytic hierarchy model was better
than the others in terms of the evaluation criteria for that
particular decision-making scenario.

TABLE 7 Summary of Poisson regression analysis for variables predicting student device selections (n = 35 devices). Model 4 (Fuzzy Percent

Change Preference Score) resulted in the best goodness of fit measures

Variable Goodness of fit
Crisp Fuzzy Fuzzy preference Fuzzy percent change preference Wald
Model Intercept utility utility score score AIC G? 2
Model 76.8 1588 2.71
1
B —5.13* 0.36**
SEpS 2.16 0.13
ef 0.01 1.44
Model 752 14.28 2.88
2
B —8.5%* 0.54 %
SES 3.20 0.19
e 0.00 1.72
Model 733 1245 337
3
p —0.33 0.01%***
SEpS 0.35 0.002
e 0.72 1.01
Model 72.5 1158 3.57
4
B —0.60 0.006°%**
SEp 0.41 0.002
éer 0.55 1.01

*p < .05 #p < 01 ¥+%p < 001
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Our work builds on previous findings in fuzzy decision-
making in design, but is unique in analyzing process data from
undergraduate students who participated in a simulated
design problem. Thus, this study can be viewed as a validation
study that uses data-enabled cognitive modeling to provide
evidence to support fuzzy decision-making models as
representations of student engineers’ decision-making
processes.

The results in this validation study also have several
implications for engineering educators. First, the results
suggest that models of fuzzy decision-making are more
aligned with how students make decisions in simulated
design environments than crisp models and that a percent
change model preference model is the best aligned with
this particular simulated design problem. This implies
that simulated design problems which are developed
based on fuzzy decision-making models are useful
approaches for allowing students to engage in realistic
design scenarios. Second, in this study all students were
given the same model-based simulated design problems
to solve and the same resources with which to solve it.
This approach gives all students an equal starting point
and provides a basis for standardized assessment.
Instructors can collect student process work in the form
of digital engineering notebooks, conversations, or
reports and collect student product work in the form of
their final design specifications. They can then use this
work to make valid comparisons among different
students’ design thinking and assess students’ design
thinking against engineering learning standards. Third,
although the model analyzed 35 teams of students, the
total number of students in this analysis was 175 because
each team consisted of five students. As such, the results
suggest that model-based simulated design problems may
allow educators to scale up traditional instruction and
provide more students access to quality design instruction
which simulate real-world uncertainties. More generally,
when creating design problems or scenarios for students,
educators can use the fuzzy-decision making framework
to create opportunities for students to practice fuzzy
decision-making in the context of design and better
understand how students are solving design problems.

Notwithstanding, this study has several limitations. First,
as stated above, the models used in this study were developed
using data from a previous study in which students solved a
design problem individually. The models were then tested on
data in which students made design decisions in teams, not as
individuals. However, as shown in the results, the models
significantly predicted decision-making when applied to team
decision-making settings.

In addition, the models were tested with 35 data points
(the number of devices that students chose in teams) from the
virtual internship, which may not account for a sufficient

amount of variability. In future studies, we will fit our model
to a larger number of teams’ design choices to test the
robustness of the model.

Finally, we examined one particular simulated design
problem, the design of a filtration membrane for a dialysis
machine and how one population, first-year undergraduate
students, solved simulated design problems. For future
studies, we will examine simulated design problems with
students and engineers at a variety of levels and also
simulated problems in various engineering disciplines and
potentially in design scenarios outside of the engineering
domain.

In conclusion, this study presents data-enabled cognitive
modeling, an approach to developing decision-making
models that are validated with real-world process data.
This work is beneficial for informing engineering design
education curricula and for training future generations of
design engineers.
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