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EDITORIAL

Distensibility, an Early Disease Marker of 
Pulmonary Vascular Health: Ready for 
Clinical Application
Farhan Raza , MD; Naomi C. Chesler , PhD

A man is as old as his arteries.1

–Thomas Syndenham

Similar to Thomas Syndenham linking (systemic) 
arteries with an individual’s health in 1600s,1 
pulmonary vascular health has been linked to 

exercise intolerance and clinical outcomes in recent 
years.2,3 These reports include rare diseases such as 
pulmonary arterial hypertension (PAH) and common 
diseases such as heart failure with preserved ejection 
fraction.3,4 Pulmonary vascular health can be quantified 
by hemodynamic afterload faced by the right ventricle 
(RV  afterload), which comprises steady and pulsatile 
components.5,6 Although the steady load is captured 
by clinical metrics of pulmonary vascular resistance 
(PVR), the pulsatile load can be assessed with variable 
precision by different metrics: the simplified metric of 
pulmonary arterial compliance computed as stroke 
volume/pulmonary pulse pressure,7 bioengineering 
metrics of pulmonary vascular impedance,8,9 and pul-
monary vascular distensibility with exercise10,11 (Figure).

See Article by Elliott et al.

Abnormalities in pulsatile RV afterload and their im-
pact on RV failure, specifically in pulmonary hypertension  

(PH) related to left heart disease, are uniquely defined 
by impedance analysis,8,9,12 albeit these are beyond the 
scope of this editorial. Although more simplistic, pul-
monary vascular distensibility, which captures the va-
sodilation of pulmonary vasculature with exercise,10,11,13 
also affects the pulsatile component of the RV after-
load. Distensibility is defined as the percent increase 
in diameter (or area) of the smallest pulmonary arteries 
per mm Hg increase in pressure.10,11 To quantify disten-
sibility coefficient (α), different programing languages 
can be used (eg, Matlab, R) to fit pressure-flow data 
in multiple loading conditions (eg, rest, passive leg 
raise, exercise stages) with a nonlinear equation using 
the Linehan model of pulmonary vascular distensibil-
ity.10,11,13,14 In healthy individuals, the increase in diam-
eter is 1.5% to 2% per mm Hg. Reduced distensibility  
(α <0.7% per mm Hg), indicative of poor pulmonary 
vascular health, is linked to RV failure and adverse 
clinical outcomes in PAH, heart failure with preserved 
ejection fraction, and heart failure with reduced ejec-
tion fraction.3,10,15 Although the physiological and prog-
nostic values of distensibility are well demonstrated, 
implementation remains a challenge in the clinical care 
of patients with PH and heart failure.

In this issue of the Journal of the American Heart 
Association (JAHA), Elliot et al16 have addressed the 
need for widespread implementation by creating a 
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web-based tool to calculate distensibility: https://
vande​rpool​rr.shiny​apps.io/iCPET_calcu​lator. The inter-
active platform, based on RShiny, is user friendly for 
clinicians and requires 3 stages of pressure-flow data 
(mean pulmonary artery pressure [mPAP], pulmonary 
artery wedge pressure, cardiac output), for example, at 
rest and 2 stages of exercise. However, Kozitza et al11 
reported that a passive-leg-raise stage can be used as 
an additional loading condition for distensibility quan-
tification and showed a similar trend to distensibility 
assessed with multistage exercise. Hence, a differ-
ent loading condition, for example, passive leg raise, 
can be used in this 3-stage invasive cardiopulmonary 
exercise test (iCPET) calculator. Elliot et al16 created 
this iCPET calculator in 4 commonly used program-
ming languages: Excel, Matlab, Python, and R/Rshiny 
(shared publicly at https://github.com/vande​rpool​rr/
iCPET_calcu​lator). The publicly available iCPET calcu-
lator, based on RShiny, is interactive and allows users 
to save the analysis along with plots.

To demonstrate the utility of this tool, their study 
population included 3 disease groups: (1) PAH (n=22, 
rest mPAP ≥25 mm Hg) and (2) a comparator (n=6, 
mixed group with rest mPAP <25 mm Hg) with base-
line and follow-up studies (median follow-up=19 
months) as well as (3) a control group (n=5, healthy 
participants) with 1-time study. The rest-to-exercise 
hemodynamic data were acquired on a supine sta-
tionary ergometer. In addition to rest hemodynamics, 
at least 2 stages of exercise hemodynamics were 
performed to acquire pressures (mPAP, pulmonary 

artery wedge pressure) and flow (cardiac output). 
Subsequently, they performed a nonlinear fit to these 
multipoint stages of pressure-flow plots (mPAP, pul-
monary artery wedge pressure, cardiac output), as 
previously described.10,11,14 To assess RV:pulmonary 
arterial (PA) coupling, the single-beat method was 
used on RV pressure waveforms to quantify the 
end-systolic:arterial elastance ratio (Ees/Ea) as ap-
proximated by [maximum isovolumetric pressure –  
(Pmax) – end-systolic pressure (ESP)]/ESP.17 RV stroke 
work index (RVSWI) was calculated as 0.0136×stroke 
volume index×(mPAP–right atrial pressure).18

The reported values of α in Elliot et al are consis-
tent with prior literature: control group (mean)=1.55% 
per mm Hg, comparator=0.79% per mm Hg (pretreat-
ment), and PAH=0.13% per mm Hg (pretreatment). 
Posttreatment, distensibility improved in the com-
parator group with early-stage disease (α=0.88% per 
mm Hg) but did not change significantly in the PAH 
group with advanced-stage disease (posttreatment 
α=0.17% per mm Hg). These observations are also 
consistent with prior literature as a loss of distensi-
bility is reported as an early disease marker15 and 
is only reversible if PH is identified and treated at an 
early stage as reported by Wallace et al (α=0.69% per 
mm Hg to 1.15% per mm Hg posttreatment).19 Elliot 
et al also showed an inverse hyperbolic PVR≈α rela-
tionship, similar to the well-known PVR≈compliance 
relationship (figure 5A and figure S5 in Elliott et al16). 
That is, distensibility is less modifiable when PVR is 
high, and α may improve only when PVR approaches 

Figure.  Methods of assessing pulmonary vascular afterload.
α indicates distensibility; PVR, pulmonary vascular resistance; Z0, input impedance; and ZC, characteristic 
impedance.
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a lower value (<3–4 Woods units). Overall, these find-
ings suggest that resistive components of pulmonary 
circulation lose compliance early in disease in PAH, 
which can be captured with a loss of distensibility, and 
are less modifiable with advanced pulmonary vascular 
remodeling. However, with future antifibrotic therapies 
such as Sotatercept, reverse remodeling of pulmo-
nary vascular disease in PAH may result in improved 
distensibility.

Moreover, to assess the impact of improved dis-
tensibility posttreatment on right heart function, the 
authors reported pre and posttreatment ventricular–
vascular coupling. In the PAH group, a small increase 
in α after treatment was associated with a Ees/Ea and 
decreased RV workload (RVSWI was closer to normal: 
8–12 g/m per beat×m−2).18 A similar trend was noted 
in the comparator group, with a higher Ees/Ea after 
treatment. These behaviors were driven mainly by a 
decrease in RV afterload (arterial elastance: Ea). These 
findings suggest that even a small increase in distensi-
bility in advanced-stage PAH may contribute to signif-
icant improvement in RV:PA coupling and a reduction 
in RV workload.

Being early adopters, we tried the web-based dis-
tensibility calculator by Elliot et al with consecutive 
sampling of a cohort of 40 patients who underwent 
iCPET at our center for a clinical indication of sus-
pected PH. These individuals included 25 patients with 
heart failure with preserved ejection fraction, 8 patients 
with PAH, and 7 healthy participants. The 3 stages in-
cluded rest, passive leg raise, and a single stage of 
peak exercise. Based on prior literature of α <0.7% per 
mm Hg as higher risk for adverse outcomes,10,11 we 
noted α <0.7% per mm Hg in 20 participants, whereas 
the other 20 participants had α ≥0.7% per mm Hg. 
The participants with lower distensibility (versus 
higher distensibility) had worse exercise PH (mPAP/
cardiac output slope [mean]: 8.9 mm Hg/L×min−1 ver-
sus 4.2 mm Hg/L×min−1) and exercise capacity (peak 
oxygen consumption [mean]: 9.4 mL/kg×min−1 versus 
12.4 mL/kg×min−1). Per echocardiogram, patients with 
lower distensibility (versus higher distensibility) had 
worse RV:PA coupling (tricuspid annular plane sys-
tolic excursion to pulmonary artery systolic pressure 
ratio [mean]: 0.33 mm/mm Hg versus 0.62 mm/mm Hg). 
The associations in our data agree with the findings of 
Elliot et al and prior literature. This demonstrates an 
easy application and prognostic relevance of iCPET 
calculator to quantify pulmonary vascular distensibility. 
Furthermore, we confirmed that this web-based imple-
mentation can be performed by a clinician without a 
bioengineering background, which should make it ac-
cessible to most PH pulmonologists or cardiologists 
and heart failure or interventional cardiologists.

In summary, the study by Elliott and colleagues 
makes a significant advancement to widespread 

implementation of distensibility as a metric of pulmo-
nary vascular health in PH and heart failure. With the 
evidence of improved distensibility leading to higher 
RV:PA coupling and reduced RV workload, the iCPET 
calculator may serve as a useful tool in risk stratification 
and treatment decisions in PH of varying phenotypes. 
Using this tool, future work can report on differences in 
distensibility based on sex and different exercise mo-
dalities (supine versus upright ergometer).
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