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Abstract
Computational models provide an efficient paradigm for integrating and linking multiple spatial and temporal scales. How-
ever, these models are difficult to parameterize and match to experimental data. Recent advances in both data collection 
and model analyses have helped overcome this limitation. Here, we combine a multiscale, biventricular interaction model 
with mouse data before and after left ventricular (LV) ischemia. Sensitivity analyses are used to identify the most influential 
parameters on pressure and volume predictions. The subset of influential model parameters are calibrated to biventricular 
pressure–volume loop data (n = 3) at baseline. Each mouse underwent left anterior descending coronary artery ligation, 
during which changes in fractional shortening and RV pressure–volume dynamics were recorded. Using the calibrated 
model, we simulate acute LV ischemia and contrast outputs at baseline and in simulated ischemia. Our baseline simulations 
align with the LV and RV data, and our predictions during ischemia complement recorded RV data and prior studies on LV 
function during myocardial infarction. We show that a model with both biventricular mechanical interaction and systems-
level cardiovascular dynamics can quantitatively reproduce in-vivo data and qualitatively match prior findings from animal 
studies on LV ischemia.

Keywords Computational model · Parameter estimation · Myocardial infarction · Biventricular interaction · Sensitivity 
analysis · Multiscale modeling

Introduction

Coronary artery disease, which can  lead to myocardial 
infarction, accounts for roughly 41% of all cardiovascular-
related deaths [33]. Acutely disrupted blood flow and oxy-
gen supply to the myocardium causes cell death and systolic 
dysfunction, raising diastolic ventricular and atrial filling 
volumes [3]. Increases in left ventricular (LV) volume raise 
left atrial and pulmonary venous pressure [9], the latter of 
which is hypothesized to initiate vascular remodeling and 

pulmonary hypertension with the eventual consequence of 
right heart failure [1, 26]. This cascade of events is diffi-
cult to integrate from experimental or clinical data alone. A 
better understanding of the acute and systems-level effects 
of LV ischemia will provide insight into the initiators of 
long-term cardiac remodeling. Moreover, an analysis of 
cardiovascular biomechanics after recent myocardial infarc-
tion may reveal contributors to long-term cardiac failure and 
comorbidities such as pulmonary hypertension.

The right ventricle (RV) is mechanically linked to the 
LV through the interventricular septum (S). Previous canine 
studies [7] in the absence of RV electrical pacing reported 
that 68% of RV systolic pressure and 80% of pulmonary 
flow output were attributed to LV and S contributions. Fol-
low-up investigations [12] also reported that RV ischemia 
reduced pulmonary systolic pressures by 4 mmHg, while 
septal ischemia had a greater effect on the RV and reduced 
pulmonary systolic pressures by 8 mmHg. Thus, systolic 
dysfunction in either chamber impairs whole heart function, 
drawing on the importance of biventricular interaction under 
pathophysiological conditions.
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In-vivo experiments provide insightful but isolated meas-
urements of cardiovascular function. In-silico computational 
models can integrate multimodal data (e.g., pressure, imaging, 
and other measurements) from in-vivo experiments to charac-
terize a subject’s hemodynamic state. These models can also 
test mechanistic hypotheses surrounding disease progression. 
For example, early work using isolated ventricular elastance 
models in a closed loop compartment model investigated the 
link between LV systolic dysfunction and pulmonary venous 
pressure [4]. While reduced LV end-systolic elastance alone 
could not replicate the rise in pulmonary venous pressure seen 
clinically, additional increased systemic venous volume and 
pericardial constraints in the model framework could recreate 
these established findings. Efforts have also resulted in the 
incorporation of LV remodeling and hemodynamic reflexes 
[37], which synergistically contribute to LV remodeling.

These prior computational studies did not explicitly account 
for biventricular interaction or include multiscale mechanisms. 
The cutting-edge reduced order model of ventricular interac-
tion is the three-segment (“TriSeg”) model by Lumens et al., 
which represents the LV, RV, and S as thick walled, spherical 
chambers driven by myocyte dynamics [18]. Several authors 
have had success in using this framework to simulate diseases 
such as pulmonary hypertension [32] and LV ischemia [16]. 
These models contain numerous parameters, requiring a for-
mal model analysis to determine which parameters are influen-
tial and identifiable given limited data [5]. A proper analysis of 
the model and experimental design is tedious; however, identi-
fying model sensitivity to the parameters as well as the uncer-
tainty in parameter estimates and model outputs is crucial for 
drawing conclusions from the model itself. The combination of 
multiscale in-silico models, robust parameter estimation from 
in-vivo data, and proper uncertainty quantification is necessary 
as computer models begin to be used for clinical analyses [6].

Here, we combine our previously reported multiscale 
model [5] with data from a cohort of male mice in base-
line and acutely ischemic conditions. Echocardiographic, 
pressure, and volume data from the LV, RV, and systemic 
arteries are collected pre-ischemia. We determine a subset 
of influential parameters using sensitivity analyses and cali-
brate the multiscale model to baseline data. We compare our 
model simulations and their uncertainty to the measured data 
pre- and post-ischemia and provide predictions of strain and 
left atrial pressure to investigate acute changes in cardiac 
biomechanics during LV ischemia [19].

Methods

In‑Vivo Animal Data

All animal procedures were approved by the University 
of Wisconsin-Madison Institutional Animal Care and Use 

Committee. Three adult C57/B16 male mice (20–22 weeks 
old) were anaesthetized with 5% isoflurane and maintained 
with 1–2% isoflurane and room air throughout all proce-
dures. Mice were put on a heated platform to maintain a 
body temperature of 37 °C and measure ECG activity. Tran-
sthoracic echocardiography (Vevo 3100, Visual Sonics) was 
used to identify systolic and diastolic inner diameter and 
fractional shortening for both the LV and RV. A cutdown 
was performed on the right carotid artery and a 1.2 Fr pres-
sure catheter (Transonic) was placed and advanced to the 
ascending aorta to measure systemic pressures. Finally, 
the thoracic cavity was entered, and the heart was exposed. 
A 1.2 Fr pressure–volume catheter with 4.0 mm spacing 
(Transonic) was inserted into the LV via direct stick through 
the myocardial wall. Baseline systemic and LV data were 
recorded. The catheter was removed and a second 1.2 Fr 
pressure–volume catheter with 3.5 mm spacing (Transonic) 
was place in the RV free wall aligned with the pulmonary 
valve. Baseline systemic and RV data were collected. A 7-0 
suture was placed around the left anterior coronary artery 
mid-ventricle and tied while still recording RV data. Typical 
ECG changes and blanching were noted. Pressure and vol-
ume measurements were recorded at 500 Hz and analyzed on 
commercially available software (Notocord Systems, Croissy 
Sur Seine, France). Then, the mice were sacrificed and the 
four heart chambers were dissected and weighed [26]. Heart 
chamber weight is converted to wall volume using a constant 
density of 1.053 g/cm3 and used in the computational model 
described later. We assume the septum occupies 1/3 of the 
LV volume [21]. A schematic of the experimental design is 
provided in Fig. 1a.

We use the MATLAB (Mathworks, Natick, MA) Gauss-
ian smoothing filter to smooth pressure–volume signals. We 
use a smoothing factor of 0.05, corresponding to 11-45 data 
point smoothing depending on signal length. We visually 
inspected signals to ensure systolic, diastolic, and general 
waveform shape were maintained. In-house algorithms 
were used to separate signals into beat-by-beat datasets for 
analyses. To account for discrepancies in pressure–volume 
phase due to catheter placement, volume traces were slightly 
shifted to ensure maximal chamber volume occurred at the 
upstroke of ventricular pressure. We use a heartbeat aver-
aged waveform from each animal and cardiovascular com-
ponent when performing model calibration and uncertainty 
quantification.

Mathematical Model

We use a previously developed multiscale cardiovascular 
model [16, 18]. The model components include (1) a modi-
fied Hill model of sarcomere shortening, (2) an empirical 
model of cardiomyocyte calcium handling, (3) four spheri-
cal cardiac chambers including biventricular interaction, 
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and (4) a zero-dimensional (0D) hemodynamics model. All 
computations are performed in units of kPa, cm (or μm in 
the sarcomere), s, and mL and subsequently converted back 
to mmHg, mm, and μL for comparison to the measured data.

The sarcomere length Ls (μm) is determined from the 
myofiber strain, �f within each chamber 

where Ls,ref = 2.0 (μm) is the reference sarcomere length at 
zero strain (i.e., �f = 0 ) given by equation (S2) in the supple-
ment. The contractile sarcomere element has length Lsc (μm) 
and is in series with an elastic series element with length 
Lse = Ls − Lsc (μm). Sarcomere shortening is described by

(1)Ls = Ls,ref exp
(

�f
)

,

where Ls,iso (μm) is the elastic series element length in an 
isometrically stressed state, and v0 (μm/s) is the velocity of 
sarcomere shortening with zero load [18]. Sarcomere activa-
tion is modeled as the sum of rise and decay terms

where CL (dimensionless) represents the increase in con-
tractility with sarcomere length and Lsc,0 (μm) represents 

(2)
dLsc

dt
=

(

Ls − Lsc

Ls,iso
− 1

)

v0,

(3)

Ψrise =
1

�rise
CL

(

Lsc

)

Frise,

CL

(

Lsc

)

= tanh

(

4
(

Lsc − Lsc,0

)2
)

,

Fig. 1  Experimental and model schematics. a Three male mice 
underwent non-invasive echocardiography, providing measurements 
of ventricular inner diameter. A pressure–volume catheter was then 
placed in the LV chamber, data were recorded, the catheter was 
removed, and placed in the RV. While the RV catheter was still in, 
the left anterior descending coronary artery was ligated, and RV pres-
sure–volume data were recorded. Echocardiography was repeated. 
b Schematic of the closed loop computational model. The two ven-

tricles are coupled through a dynamic septal wall using the TriSeg 
framework. All four heart chambers are encased in a passive, pericar-
dial sack and connected to compliant arterials and venous compart-
ments. Resistors connect all compartment model components. LA left 
atrium, LV left ventricle, PA pulmonary arteries, PV pulmonary veins, 
RA right atrium, RV right ventricle, S septum, SA systemic arteries, 
SV systemic veins
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the contractile element length with zero active stress. The 
second term Frise (dimensionless) describes changes in car-
diomyocyte intracellular calcium

where �rise (s) scales the rise in contractility. Calcium decay 
is given by

The decay in activation saturates at the diastolic value 
Γrest (dimensionless), and depends on the systolic contrac-
tion and diastolic decay parameters �sys and �decay (s), respec-
tively. Equations (3) and (5) dictate the total contractile state, 
Γ (dimensionless), which is modeled by the differential 
equation:

The active stress, Gact (kPa) is finally calculated as

where �act (kPa) is a scaling parameter [18]. Passive sar-
comere stretch is relative to the passive reference length 
Ls,pas,ref (μm)

The passive stresses are separated into those attributed to 
the extracellular matrix (ECM) and Titin

where �ECM and �Titin (kPa) are scaling parameters and kECM 
and kTitin (dimensionless) account for non-linear chamber 
stiffening [34].

The sarcomere model is embedded within each cardiac 
chamber and the interventricular septum. Ventricular inter-
action across the septal wall is prescribed using the TriSeg 
model [18]. Cardiac chamber geometries are modeled as 
spherical structures described by a mid-wall volume Vm 
 (cm3), mid-wall curvature Cm (1/cm), and mid-wall cross-
sectional area Am  (cm2) and parameterized by a reference 
mid-wall area, Am,ref  (cm2), and a wall volume, Vwall  (cm3). 
Tension balance across the LV, RV, and S walls are enforced 
by two algebraic constraints. Details regarding the cham-
ber equations can be found in the Supplementary Material. 

(4)
Frise(t) = 0.02x3(8 − x)2 exp (−x), x = min

(

8,
(

t∕�rise
))

,

(5)

Ψdecay =
1

�decay

(

Γrest − Γ(t)

1 + exp
((

T
(

Lsc

)

− t
)

∕�decay
)

)

,

T
(

Lsc

)

= �sys
(

0.29 + 0.3Lsc
)

.

(6)
dΓ

dt
= Ψrise + Ψdecay.

(7)Gact = �actΓ
(

Lsc − Lsc,0
)

(

Ls − Lsc

Lse,iso

)

,

(8)�s,pas =
Ls,ref

Ls,pas,ref
exp

(

�f
)

.

(9)
GECM = �ECM

(

�
kECM
s,pas − 1

)

, GTitin = �Titin

(

�
kTitin
s,pas − 1

)

,

All four heart chambers are enclosed in a pericardium. We 
assume that the pericardial sack has a reference volume, 
V0,peri , and exhibits a non-linear pressure–volume relation-
ship driven by total blood volume in the heart [15]. Pericar-
dial pressure, pperi (kPa), is then

where Vheart (μL) represents the total volume in all four heart 
chambers and kperi (kPa) describes the exponential rise in 
pericardial pressure. This pressure value is added to each 
cardiac chamber as an external pressure source.

Arteries and veins are modeled as compliant compart-
ments. Changes in blood volume V  (mL), flow q (mL/s), and 
pressure p (kPa) are described as [6]

where Vun ( m L) is the unstressed volume, C ( m L / kPa) is 
the vascular compliance, and R (kPa s / m L) is the vascular 
resistance between compartments. Cardiac valves are mod-
eled as diodes and are only open when the pressure gradients 
are positive. We also include a valve between the systemic 
veins and the right atrium, which prevents backflow and can 
mimic vena cava collapse. A schematic of all model compo-
nents can be found in Fig. 1(b).

Model Analysis

The mathematical model includes 18 differential equations 
(eight compartment volumes, V(t) , five sarcomere states, 
Lsc(t), and five contractility states, Γ(t) ) as well as two equi-
libria constraints (tension balance for the TriSeg model, see 
Supplemental Material). These equations require a total 
of 53 parameters, described in Table 1, which cannot be 
inferred simultaneously. Several of the parameters in the 
sarcomere model, such as the various reference sarcomere 
lengths, are fixed to values consistently used in the literature 
[18, 34]. We calculate wall volumes, Vwall , as the ratio of 
chamber mass to myocardial density, 1.053 g/cm3. [5]This 
leaves 38 free parameters to analyze by Morris screening 
and local sensitivity analysis [5, 23]. Table 1 and the Sup-
plementary Material describe how nominal parameters are 
calculated.

(10)pperi = exp

(

kperi

(

Vheart

V0,peri

− 1

))

,

(11)
dV

dt
= qin − qout,

(12)p =

(

V − Vun

)

C
,

(13)q =
pout − pin

R
,
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Morris screening is an efficient screening tool that uses 
coarse approximations of model sensitivity to determine 
which parameters are non-influential [23]. We use simu-
lated LV and RV pressure–volume relationships as well 
as systemic arterial pressure as our quantities of interests. 
We rank parameter importance based on the modified sam-
ple mean, �∗ , and sample variance, s2 , through the index 
M =

√

�∗2 + s2 [5, 36]. Similar to van Osta et al. [23], 
parameters consistently less influential than the mean value 
of M on all five outputs are deemed non-influential and 
fixed. Parameter bounds for sampling are set at ±20% from 
the nominal value for each mouse.

Though Morris screening can identify the least influ-
ential parameters, it does not provide detailed information 
about parameter interactions, nor does it provide information 
about identifiability. Local sensitivity analysis can provide 
approximate metrics of local identifiability [22]. The local 
sensitivity of each pressure or volume, denoted as f (t;�) , is 
approximated by centered finite differences

where h = 0.01 is the step size and ei is the unit vector in 
the ith direction. To account for differences in parameter 
and output magnitudes, we use dimensionless sensitivities 
by multiplying by �i∕f (t;�) [22]. We use the local sensitiv-
ity vectors to construct an approximate Fisher information 
matrix, F = S⊤S , and assess practical identifiability in an 
asymptotic sense [6, 10]. If F is ill-conditioned, then the 
parameter subset is deemed non-identifiable and requires 
reduction. In this study, we investigate the local sensitivity 
of the reduced parameter subset after Morris screening. If 
F is ill-conditioned, the least influential parameter is fixed 
and the algorithm is iterated again. We continue this scheme 
until cond(F) ≤ 105 , which is our numerical ill-conditioning 
cutoff.

Parameter Inference and Uncertainty Quantification

The reduced subset is calibrated to data using non-linear, 
weighted least squares [6]. We minimize the negative log-
likelihood, −LL , defined by

where ydata =
[

pdata
RV

,Vdata
RV

, pdata
LV

,Vdata
LV

, pdata
SA

]

 denotes the 
measured data in the RV, LV, and systemic arteries (SA), 
f (t;�) is the corresponding model output, and N represents 
the number of data points, respectively. We infer the natural 
log transferred parameters to ensure that they have similar 

(14)Si =
df (t;�)

d�i
=

f
(

t;� + hei
)

− f
(

t;� − hei
)

2h
,

(15)

−LL(�) =
N

2
log (2𝜋det(�))

+
1

2

[

(

ydata − f (t;�)
)⊤
�
−1
(

ydata − f (t;�)
)

]

,

magnitudes. To account for the possible heteroskedastic 
error variance in the signal across the five measurement 
locations, we include a diagonal error covariance matrix, 
� = diag

(

�2
i

)

 , which is updated using iteratively reweighted 
least squares (see the Supplemental Material) [30]. This 
error covariance includes five possibly unique error vari-
ances, �2

i
 , which correspond to the RV, LV, and SA meas-

urements. Equation (15) is updated and minimized using 
fminunc in MATLAB and halted once the estimates of � 
have converged.

The inferred log-scaled parameters, �̂ , and calibrated 
model response Ŷ , carry some uncertainty due to measure-
ment error. We construct 95% confidence intervals about 
our inferred log parameters by calculating [2, 30]

The matrix C is the asymptotic parameter vari-
ance–covariance matrix, Σ̂ is the estimated diagonal error 
covariance calculated iteratively through equation (15), 
and Ŝ is the sensitivity of the log-likelihood at �̂ . The 
number of total data points Ntot and the number of param-
eters Npar are used to compute a two-sided t-score statistic 
t0.975
Ntot−Npar

 corresponding to a 95% confidence interval [2, 30]. 
We exponentiate the log-confidence intervals in equation 
(16) after computing all relevant indices.

The corresponding response confidence and prediction 
intervals around the optimal model output, Ŷ , are

and

where �̂ is the final estimate of the diagonal error covariance 
matrix. The confidence interval in equation (17) represents 
the uncertainty in the mean response without additional vari-
ation in the data, whereas the prediction interval from equa-
tion (18) also incorporates the measurement variance in new 
observations; hence, prediction intervals will be wider than 
their corresponding confidence intervals. Additional details 
can be found in the Supplemental Material.

Simulated Myocardial Infarction

We simulate myocardial infarction by reducing LV active 
force at the sarcomere

(16)
�

�𝜃−
i
,�𝜃+

i

�

= �̂�i ± t0.975
Ntot−Npar

√

Cii, Cii =
�

Ŝ
⊤
Σ̂−1Ŝ

�−1

.

(17)
[

YCI− ,YCI+
]

= Ŷ ± t0.975
Ntot−Npar

√

Ŝ
⊤
CŜ

(18)
[

YPI− ,YPI+
]

= Ŷ ± t0.975
Ntot−Npar

√

�̂ + Ŝ
⊤
CŜ,

(19)FMI
rise

(t) = �MI
⋅ Frise(t),
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Table 1  Model parameters

Parameters denoted with an * are fixed before performing Morris screening or local sensitivity analyses. 
Cardiac parameters denoted with a subscript j have an atrial and ventricular component, with atrial values 
provided in parenthesis. Mouse-specific values are given in square brackets. T  (s) represents the mouse-
specific average cardiac cycle length. Pressure and volume variables are described in detail in the Supple-
mentary Material
Cap capillary, CO cardiac output, LA left atrium, LV left ventricle, PA pulmonary arteries, PV pulmonary 
veins, RA right atrium, RV right ventricle, S septum, SA systemic arteries, SV systemic veins

Parameter Description Units Nominal value/equation

Sarcomere parameters
Ls,ref,j* Reference sarcomere length at zero strain μm (2.0), 2.0

Ls,iso* Elastic series element length in isometric state μm (0.04), 0.04

Ls,pas,ref* Reference length for passive all constituents μm (1.8), 1.8

v0,j Velocity of sarcomere shortening μm/s (24), 12

Lsc,0* Contractile element length μm (1.51), 1.51

Γrest* Resting contractility Dimensionless (0.02), 0.02

�rise,j Rise in contractility scaling s (0.0375 ⋅ T) , 0.009
�decay,j Decay in contractility scaling s (0.005 ⋅ T), 0.009

�sys,j Length of systole s (0.15 ⋅ T), 0.038

�offset,A Offset of atrial systole s 0.18 ⋅ T

kECM,j Non-linear ECM stiffness exponent Dimensionless (10), 10

kTitin,j Non-linear Titin stiffness exponent Dimensionless (6), 6

�ECM,j Passive ECM stress scaling factor kPa (0.08), 0.08

�Titin,j Passive Titin stress scaling factor kPa (0.25), 0.25

�act,j Active stress scaling factor kPa (35), 75

TriSeg/cardiac parameters
VLA,wall* LA wall volume cm3 Chamber mass/1.053 g/cm3

VLV,wall* LV wall volume cm3 Chamber mass/1.053 g/cm3

VRA,wall* RA wall volume cm3 Chamber mass/1.053 g/cm3

VRV,wall* RV wall volume cm3 Chamber mass/1.053 g/cm3

VS,wall* S wall volume cm3 Chamber mass/1.053 g/cm3

Am,ref,LA LA reference area cm2 [0.15, 0.15, 0.15]

Am,ref,LV LV reference area cm2 [0.50, 0.70, 0.50]

Am,ref,RA RA reference area cm2 [0.15, 0.15, 0.15]

Am,ref,RV RV reference area cm2 [0.55, 0.80, 0.50]

Am,ref,S S reference area cm2 [0.25, 0.35, 0.35]

V0,peri Reference volume for pericardial space mL [0.159, 0.178, 0.165]

kperi Material parameter of pericardial tissue kPa 10

Cardiovascular system parameters
Ra,val Aortic valve resistance kPas/mL 0.1/CO
Rm,val Mitral valve resistance kPa s/mL 0.75/CO
Rp,val Pulmonic valve resistance kPa s/mL 0.1/CO
Rt,val Tricuspid valve resistance kPa s/mL 0.75/CO
Rvc Vena Cava resistance kPa s/mL

(

Psv − Pra,min

)

∕CO

Rpv Pulmonary venous resistance kPa s/mL
(

Ppv − Pla,min

)

∕CO

Rsys Systemic circulation resistance kPa s/mL
(

Psa,max − Psys,cap,
)

∕CO

Rpulm Pulmonary circulation resistance kPa s/mL
(

Ppa,max − Ppulm,cap

)

∕CO

Csa Compliance of systemic arteries mL/kPa Vsa∕Psa,max

Csv Compliance of systemic veins mL/kPa Vsv∕Psv

Cpa Compliance of pulmonary arteries mL/kPa Vpa∕Ppa,max

Cpv Compliance of pulmonary veins mL/kPa Vpv∕Ppv
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where �MI reflects the decrease in activation due to ischemia. 
We set �MI such that LV ejection fraction is reduced by the 
same amount measured by echocardiography. We also exam-
ine changes in longitudinal wall strain

where Ls(t) is the dynamic sarcomere length and Ldiastole
s

 is 
the length at end-diastole. The model and analysis scripts 
that compute the above are available on GitHub (https:// 
github. com/ mjcol ebank/ Coleb ank_ 2023_ Acute Ische mia).

Results

In‑Vivo Data

Echocardiography and pressure–volume loops for each 
mouse are shown in Fig. 2. The time-dependent ventricu-
lar pressure and volume data are provided for each mouse, 
including RV pressure–volume data during ischemia in 
Fig. 2c. Ischemia introduces a decrease in RV volumes, espe-
cially in mouse 3. LV and RV inner diameters (Fig. 2d) are 

(20)�long =
Ls(t) − Ldiastole

s

Ldiasole
s

,

similar across all three mice. After coronary artery ligation, 
there is an increase in both systolic and diastolic LV inner 
diameter, contributing to a reduction in fractional shorten-
ing. There is also an increase in RV diastolic diameter, but 
not in RV systolic diameter nor in fractional shortening.

Sensitivity Analyses

A total of 100 Morris screening initializations were run per 
mouse. Parameter ranking for the five different model out-
puts are provided in Fig. 3. The parameters describing the 
timing of ventricular systole and diastole ( �rise,v, �decay,v , and 
�sys,v ) are consistently the most influential on LV and RV 
pressure. The vascular parameters Rsys,Rpulm, and Csv are 
also influential on both pressure predictions. The LV, RV, 
and S reference areas are more influential on ventricular vol-
ume than ventricular pressure. Active force generation �act,v 
and the reference pericardial volume V0,peri are moderately 
influential for all five outputs. Eighteen parameters have 
an average effect less than the mean, M, and are deemed 
non-influential.

The remaining 20-parameter subset is examined using 
local sensitivity analysis for each mouse. The matrix F is 
invertible for all three mice but has a condition number 
between 1e7 and 1e8, which is numerically ill-conditioned 
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by our criteria. Several iterations of subset reduction are 
carried out until F has condition number below 1e5. A final 
subset using this approach consists of the 11 parameters

Model Calibration and Uncertainty Quantification

We infer �̂ for each mouse using the recorded baseline 
data. Optimal parameter estimates and the associated con-
fidence intervals are provided in Table 2. Calibrated model 

(21)

�opt =

[

Am,ref,LV,Am,ref,RV,Am,ref,S, �rise,v, �decay,v,

�sys,v, �act,v,Rsys,Rpulm,Csv,V0,peri

]

.

pressure–volume loops, shown in Fig. 4a, align well with 
the recorded systolic and diastolic values. However, our 
calibrated simulations maintain the “ideal” pressure–vol-
ume loop shape while the data do not. Confidence and 
predictions intervals for the time-series model outputs are 
shown in Fig. 4b. The confidence intervals are more nar-
row than the corresponding predictions intervals, which 
contain nearly all the data across every measurement. 
Calibrated model simulations of pressure match well to 
the data, while the calibrated volume simulations show a 
slight discrepancy during isovolumic contraction. Param-
eter correlations at the optimal parameter value �̂ can be 
found in the Supplementary Material along with the esti-
mated error variances in �̂. 
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Simulated Myocardial Infarction

We simulate ischemia by decreasing the LV active force gen-
eration using �MI . In-vivo changes in LV fractional shorten-
ing (equivalent to ejection fraction) in Fig. 2d show a 60%, 
69%, and 54% reduction during ischemia, for mouse 1, 2, 
and 3, respectively. Simulated LV and RV outputs at base-
line and in ischemia are shown in Fig. 5a. Using �MI = 0.25, 
0.15, and 0.25 reduced the ejection fraction by 58%, 71%, 
and 52%, for mouse 1, 2, and 3, respectively. Decreased 
contractile function shifts LV pressure–volume relation-
ships rightward. Stroke volume in both heart chambers is 
reduced in ischemia, while diastolic RV pressure increases. 
Recorded RV pressure–volume data during ischemia also 
show a slight leftward shift as seen by the model. Data from 
mice 1 and 2 have a similar stroke volume to the model 
predictions, while mouse 3 has a substantial reduction in 
volume values. Ventricular stroke work, the area within the 
pressure–volume loop, is shown in Fig. 5b for both the data 
and model simulations. Stroke work is greater in the LV than 
the RV due to the difference in pressure magnitudes. Stroke 
work in both cardiac chambers decreases with LV ischemia.

We also investigate the systems-level effects of LV 
ischemia. Figure 6 displays left atrial pressure–volume 
loops at baseline and in ischemia. All three mice show an 
upward shift in ischemia, attributed to elevated LV diastolic 
and pericardial pressure (not shown). The latter increases on 
average 2 to 5 mmHg with ischemia.

Longitudinal strains for the LV, RV, and S at baseline and 
during ischemia are provided in Fig. 7. Strains for all three 
walls are in phase at baseline, indicative of synchronous 
muscle shortening. In contrast, ischemic LV longitudinal 
strains are less pronounced due to the inability for the heart 
chamber to contract. RV strains are relatively unchanged 
with ischemia, while S wall strain magnitude is higher in 
systole with ischemia.

To better understand the effects of decreased LV con-
tractility, we show LV pressure versus sarcomere length 

for various values of �MI in Fig. 8. Moving from baseline 
(magenta, far left) to nearly aberrant active force (green, far 
right), results show a decrease in LV pressure and elevated 
sarcomere lengths. The optimal degree of reduction for the 
data is plotted in black in Fig. 8. The pressure–length curves 
with larger reductions in active force exhibit a unique shape 
compared to less severe simulations.

Discussion

This study combines multiscale computational modeling 
and parameter inference with in-vivo rodent data to investi-
gate the acute biventricular consequences of LV myocardial 
ischemia. We identified a subset of cardiovascular param-
eters that can be made mouse-specific and calibrated them 
to hemodynamic data. We demonstrate that simulated acute 
LV ischemia raises septal wall strain, elevates left atrial pres-
sure, and alters LV pressure–length relationships while RV 
function is relatively unchanged.

Model Analysis

Multiscale models suffer from an imbalance in the num-
ber of model parameters versus available data. This inhibits 
inferring all system parameters and requires model analysis 
for robust parameter subsets. Morris screening is an efficient 
global sensitivity method to determine which parameters are 
non-influential, reduce simulation uncertainty, and enforce 
unique parameter values for each dataset [36]. Our screen-
ing results (Fig. 3) show that the reference areas ( Am,ref ) 
and sarcomere contraction timing parameters ( �rise,v, �decay,v, 
and �sys,v ) are consistently influential. Van Osta et al. [23] 
performed a similar screening on their multiscale model of 
biventricular interaction. They identified reference areas, 
ventricular timing coefficients, and active force scaling fac-
tors as influential on ventricular wall.

Table 2  Optimal parameter 
estimates and 95% confidence 
intervals

Parameter Mouse 1 Mouse 2 Mouse 3

Am,ref,LV  (cm2) 0.483 [0.330, 0.706] 0.742 [0.557, 0.987] 0.549 [0.340, 0.887]

Am,ref,RV  (cm2) 0.569 [0.435, 0.744] 0.785 [0.591, 1.04] 0.481 [0.368, 0.629]

Am,ref,S  (cm2) 0.242 [0.108, 0.543] 0.250 [0.079, 0.786] 0.254 [0.098, 0.658]

�rise,v (s) 0.007 [0.006, 0.009] 0.009 [0.007, 0.012] 0.008 [0.006, 0.010]

�decay,v (s) 0.009 [0.008, 0.010] 0.009 [0.007, 0.011] 0.009 [0.007, 0.011]

�sys,v (s) 0.032 [0.020, 0.050] 0.037 [0.025, 0.054] 0.034 [0.023, 0.050]

�act,v (kPa) 72.3 [40.9, 128] 74.6 [25.9, 215] 77.6 [35.7, 169]

Rsys (kPa s/mL) 41.8 [39.7, 44.0] 25.2 [22.3, 28.6] 22.1 [19.6, 24.9]

Rpulm (kPa s/mL) 10.2 [8.69, 12.0] 5.89 [4.49, 7.73] 7.34 [6.31, 9.48]

Csv (mL/kPa) 0.086 [0.076, 0.099] 0.095 [0.072, 0.124] 0.127 [0.106, 0.152]

V0,peri (mL) 0.149 [0.076, 0.295] 0.179 [0.148, 0.216] 0.162 [0.061, 0.428]
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captured within the uncertainty bounds
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Fig. 5  Changes in pressure–
volume relationships with LV 
ischemia. a Baseline pres-
sure–volume data (gray) in 
the LV (top) and RV (bottom) 
compared to the baseline simu-
lations after parameter inference 
(solid, colored lines). Ischemic 
RV data (solid, blue) and RV 
predictions (dotted, blue). Note 
that LV ischemia causes a 
rightward shift in LV pres-
sure–volume loops, while RV 
pressure–volume loops show 
a slight to moderate leftward 
shift with a reduction in stroke 
volume. Ischemic RV data vary 
with each mouse. b Ventricular 
stroke work (integral of the 
pressure–volume loop) at 
baseline and in ischemia. Stroke 
work is larger in the LV due to 
pressure magnitude, and both 
LV and RV stroke work are 
reduced in ischemia
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We employed local sensitivity methods to further reduce 
our parameter space. Colunga et al. [6] used local sensitiv-
ity to reduce their parameter subset and ensure unique, uni-
modal posterior distributions for Bayesian inference. Their 
results showed that identifiability issues arose when using 
a non-influential subset of parameters. The parameter sub-
set in the current study corroborates our previous findings 
[5]. However, the model used here accounts for pericardial 

constraints whereas our previous model did not. Computa-
tional studies by Pfaller et al. [25] and Sun et al. [31] have 
highlighted the importance of the pericardium on model 
predictions of LV and RV pressure. Sun et al. also showed 
that pericardial fluid volume altered hemodynamic predic-
tions by upwards of 20%. This corroborates our findings that 
model predictions are sensitive to the reference pericardial 
volume, V0,peri.
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Fig. 7  Predicted longitudinal strain in the LV, RV, and S in all three 
animals after parameter inference. At baseline, all three walls contract 
synchronously and reach 10% shortening. Ischemia reduces longi-

tudinal strain in the LV, while RV strain is relatively unchanged and 
S strain is increased. Time to peak strain in the RV and S are more 
delayed in ischemia

Fig. 8  LV pressure–sarcomere length relationships in each mouse. 
Starting from each mouse’s optimal parameter set, the value of �MI is 
decreased from 1.0 to 0.1, reflecting a 0–90% decrease in LV active 
force generation. The optimal value of �MI is shown in black and pro-

vides a reduction in ejection fraction that best matches measurements 
in mice during ischemia. Note that the pressure–length curve has a 
distinct change in shape near the value of 0.2 and is qualitatively sim-
ilar to prior studies using sonomicrometry [19]
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Model Calibration

Identifying animal-specific parameters from in-vivo data 
can provide insight into unmeasurable properties of the car-
diovascular system. Invasive measurements usually require 
multiple animals for sufficient evidence to test hypotheses; 
however, a combination of these data with mechanistic 
modeling can help investigate mechanisms of disease at a 
reduced animal burden. These models can also link data 
from multiple scales and multiple organs to highlight their 
underlying interactions, which is difficult to do with experi-
ments alone.

Several previous studies have calibrated models to pres-
sure–volume data in rodents. The study by Tewari et al. 
[32] calibrated model parameters to match data from mice 
subjected to 0, 14, 21, and 28 days of pulmonary arterial 
hypertension conditions (using chemical and environmen-
tal stimuli) [35]. The authors found an increase in Am,ref,RV 
and a decrease in Cpa with increasing duration, which agrees 
with clinical understanding of RV and pulmonary adapta-
tion in disease progression. Biventricular pressure–volume 
loop data have been recorded previously in rodents [11], 
yet this is the first study to use these data for model cali-
bration. Results in Table 2 suggest that animals with larger 
end-diastolic volumes (e.g., Mouse 2) tend to have larger ref-
erence areas in that chamber. Our previous study [5] showed 
that model calibration to data from both ventricles reduced 
parameter and output uncertainty compared to only using 
RV data. The current study is one of the first to show that 
pressure–volume dynamics can be accurately captured in 
both ventricles using a biventricular heart model.

Calibrated model simulations shown in Fig. 4b are rela-
tively consistent with systolic and diastolic pressure–volume 
data. The shapes of ventricular pressure curves are relatively 
well captured by our model; however, ventricular volume 
shapes are different between the model and the data. LV 
volume measurements recorded by Marquis et al. [20] were 
also more variable than the corresponding pressure measure-
ments. Similar variability can be seen in RV volume record-
ings in the mouse study by Tewari et al. [32, 35]. Since there 
is inherent beat-to-beat variability in these measured quanti-
ties, we calibrate our model to heartbeat averaged signals.

Uncertainty quantification is a necessary, but often 
overlooked, step in the model analysis pipeline. Parameter 
confidence intervals, as determined in this work, provide 
substantially more information than point estimates alone. 
These analyses are warranted, especially as in-silico models 
gain traction as a potential bench side tool in the clinic. Here, 
we use asymptotic analyses based on frequentist statistical 
theory and incorporate heteroskedasticity by constructing 
error variance estimates for each measurement location [5, 
20]. Model confidence intervals shown in Fig. 4b are nar-
rower for the LV and RV pressure predictions in comparison 

to SA pressure and LV and RV volumes. This is linked to 
the high sensitivity of these states to the model parameters, 
as well as the larger mismatch between these data and the 
model. The wider prediction intervals contain most of data, 
with the largest prediction intervals associated with chamber 
volumes. The study by Marquis et al. [20] also provided 
output uncertainty in their model predictions using a similar 
methodology. However, our model prediction intervals are 
wider and contain a larger proportion of the data.

Simulated Ischemia

Myocardial infarction is a precursor to long-term cardiac 
dysfunction and a risk factor for heart failure. There are mul-
tiple systems-level changes that occur during the onset of LV 
ischemia, which are critical in understanding survival rates 
and long-term cardiac remodeling [37]. A combined in-vivo 
and in-silico analysis can assist in understanding the inter-
connected dynamics of the cardiac chambers and vasculature 
in both physiological and pathological scenarios. Mechanis-
tic models that tie together local and global cardiovascular 
function can be used to test hypotheses surrounding acute 
ischemic events and may be able to reduce the number of 
animals for in-vivo studies.

Data from all three mice show a reduction in fractional 
shortening and LV contractile function during ischemia. 
We simulate impaired LV function by reducing the active 
force generation by sarcomere shortening in the LV. Other 
authors have considered more sophisticated simulation 
strategies for ischemia. Witzenburg et al. [37] separated 
the LV into infarcted and non-infarcted regions, the latter 
only contributing to passive LV mechanics. Witzenburg also 
accounted for compensatory changes in afterload parameters 
and showed that model predictions matched well with prior 
experimental (canine) studies. Koopsen et al. [16] consid-
ered a similar, two-compartment approach for simulating LV 
infarction; these authors included biventricular interaction 
and showed agreement with previously obtained canine data 
from Lyseggen et al. [19].

Our simulated LV pressure–volume loops in Fig. 5a 
display a rightward shift with ischemia. Shiorua et al. [28] 
reported a similar shift in LV pressure–volume loops and 
a substantial (nearly 50%) reduction in LV stroke work 
two weeks after mice were subjected to LV ischemia. The 
ischemic RV simulations and data show a leftward shift in 
the pressure–volume loop, opposite to the LV. The reduced 
end-systolic and end-diastolic volumes are well captured in 
mice 1 and 2, whereas data from mouse 3 show a much 
larger shift in volumes after LV ischemia. Our agreement 
between the simulations and RV data during ischemia are 
attributed to the biventricular interaction model, as normal 
septal wall contraction prevents a large shift in blood volume 
away from the RV.



2541Biventricular Interaction During Acute Left Ventricular Ischemia in Mice: A Combined In‑Vivo…

1 3

Experimentally, Damiano et al. [7] examined biventricu-
lar interaction by excising the sinoatrial node in mongrel 
dogs and controlling RV pacing. The authors noted that 
approximately 68% of RV systolic pressure was generated 
by the LV when ceasing RV pacing in dogs. Our model pre-
dicts a small decrease in RV systolic pressure in ischemia 
with relatively unchanged RV fractional shortening and 
pressure as measured by catheter. The discrepancy between 
Damiano’s finding and ours likely results from differences 
in experimental design (electrical pacing versus ligation), 
severity of the insult, species, and the unchanged dynamics 
of the shared septal wall.

Data from both ventricles enhance estimates of ventricu-
lar indices, including stroke work (Fig. 5b). Philip et al. [26] 
examined RV pressure–volume loops in mice eight weeks 
after LV ischemia and saw an increase in RV stroke work 
relative to the sham animals, which is contrary to our results. 
Philip et al. attributed this heightened stroke work to the 
development of pulmonary hypertension after ischemia, the 
severity of which depends on increased pulmonary vascular 
resistance. Since the increase in resistance is a chronic effect, 
the RV stroke work likely decreases at the onset of ischemia 
and then increases as pulmonary pressures rise due to pul-
monary vascular remodeling [1].

The effects of myocardial infarction on LV systolic 
function are well studied, yet less work has focused on 
global changes during acute LV ischemia. Left atrial pres-
sure–volume loops shift upward (Fig. 6) with the elevated 
LV end-diastolic pressure–volume relationship. Bauer 
et al. [3] reported a similar upward shift in bovine atrial 
pressure–volume loops during acute left anterior coronary 
artery occlusion. Another study by Hanif et al. [14] reported 
that mouse models of non-perfused myocardial infarction 
exhibit left atrial enlargement, atrial cardiomyocyte hyper-
trophy, and elevated left atrial fibrosis after multiple weeks. 
The elevation in left atrial pressure after LV ischemia is 
hypothesized to be a determinant of isolated post-capillary 
pulmonary hypertension [1]. Philip et al. [26] showed that 
LV ischemia in mice increases left atrial wall mass eight 
weeks after injury. Our model produces elevated pulmonary 
venous, left atrial, and pericardial pressures during acute LV 
ischemia, complementing these prior findings.

Strain results (Fig. 7) confirm equal levels of LV, RV, and 
S shortening at baseline. In ischemia, there is altered LV 
shortening and elevated S strain, with no apparent change 
in RV strain. Dann et al. [8] compared murine strain magni-
tudes after LV ischemia and reported significant reductions 
in LV free-wall shortening within the first seven days post 
ligation. Clinically, myocardial strain imaging is gaining 
traction as an indicator of heart function. Hamada-Harimura 
et al. [13] reported a strong correlation between RV free-wall 
longitudinal shortening and adverse cardiac events in acute 
decompensated heart failure suggesting that incompatible 

biventricular interactions might be indicative of mortality. 
The review by Smiseth et al. [29] identifies several novel 
uses for strain analysis in LV ischemia, especially during 
fibrosis and scar development. Further investigations into 
cardiac wall strain after ischemia are warranted, though our 
model simulations parallel the findings from the literature 
[16, 34]. The agreement in wall strains provides another vali-
dation point for our model and again highlights the impor-
tance of including the septum and biventricular interaction 
in model development.

As LV active force is reduced (i.e., as �MI approaches 
zero), end-diastolic volumes and sarcomere lengths increase 
(Fig. 8). The shape of the pressure–length curve is main-
tained for initial reductions in LV active force but change for 
values of �MI between 0.3 and 0.1. This “loop” like pattern 
was observed in Lyseggen et al. [19], who measured LV 
long-axis strain in canines during LV ischemia. The authors 
showed that the viable LV myocardial pressure–strain curve 
switched from counter-clockwise to clockwise after 15 min-
utes of ischemia. The recent computational study by Koo-
psen et al. [16] reproduced similar plots using a two-com-
partment model of the ischemic LV and simulated the effects 
of reperfusion that parallel results reported by Lyseggen 
et al. Our results, similar to Koopsen et al., illustrate how 
mechanistic, multiscale modeling can assist in verifying and 
simulating previously established findings in the literature.

Limitations

Our study combines a multiscale model of cardiovascular 
dynamics with pressure–volume loop data from three ani-
mals. We plan to use a larger cohort of animals, includ-
ing both male and female mice, in future studies. A larger 
amount of data would allow for proper characterization of 
the time-dependent pressure–volume relation, the signal 
biases, and possible corrections needed in pressure–volume 
loop shape. This would assist in determining the measure-
ment error variances within the error covariance Σ̂ . We did 
not examine infarct size postmortem, though future studies 
could correlate these data with the degree of active force 
reduction, �MI . We simulate acute LV ischemia but do not 
account for any acute hemodynamic control mechanisms 
e.g., the baroreflex. These mechanisms play a role in the 
long-term homeostasis of the cardiovascular system [37], 
but it is unclear how quickly these response mechanisms 
act. Future studies across multiple days will require more 
detailed models of cardiovascular adaptation and remod-
eling. Detailed data on the RV response to LV ischemia are 
necessary; e.g., strain data on biventricular inefficiency and 
mechanical uncoupling (i.e., a transition from rightward to 
leftward septal motion) would provide information into the 
progression of RV dysfunction due to LV dysfunction.
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We use a combination of global and local sensitivity analy-
ses to reduce our parameter subset. More robust identifiabil-
ity methods, such as profile-likelihood analyses [5], could be 
used to provide additional insight into parameter dependen-
cies on the outputs. We construct estimates of both parameter 
and output uncertainty using asymptotic frequentist analyses. 
While this is a necessary first step, we make several assump-
tions in our statistical model. We assume that the measure-
ment errors are independent, which is likely incorrect given 
the nature of both the pressure–volume catheter measurements 
and the underlying coupled physics in the ventricles. We also 
disregard model misspecification or model discrepancy, which 
requires a more rigorous mathematical and statistical analy-
sis [17, 24]. Without details regarding measurement bias and 
precision, we likely overlook key components of the measure-
ment error that could be informative when constructing our 
statistical model. Moving forward, more effort and research 
should be tailored toward understanding the underlying model 
and statistical assumptions, and the possible bias in parameter 
estimates that follow from these assumptions.

Conclusions

We combine in-vivo biventricular pressure–volume loop 
data with a multiscale computational model of the cardio-
vascular system. Our study utilizes experimental data with 
multiscale modeling to identify parameter point estimates, 
their uncertainty, and the uncertainty in the model outputs. 
We present a framework that can benefit both the experimen-
tal and modeling communities as we move toward develop-
ing the field of digital health. Our results also show that 
LV and RV pressure–volume loops can be matched by the 
model. Our simulations of acute LV ischemia are in line 
with both recorded RV data and previously published studies 
documenting the LV’s response. This study displays sys-
tems-level hemodynamic changes during the acute stages 
of myocardial infarction and shows elevated left atrial pres-
sures due to insufficient LV contraction. Our combination 
of in-vivo and in-silico techniques provides a framework for 
understanding the initial effects of LV ischemia and serves 
as a foundation for an improved understanding of cardiac 
and vascular remodeling in heart failure with reduced ejec-
tion fraction.
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